Given that the linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is statistically significant, find the linear regression line in the form [tex]\(\hat{y} = a x + b\)[/tex] for this relationship. Round [tex]\( a \)[/tex] and [tex]\( b \)[/tex] to the nearest thousandth.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
3 & 90.8 \\
\hline
4 & 91.2 \\
\hline
6 & 82.5 \\
\hline
8 & 75.8 \\
\hline
9 & 62.8 \\
\hline
17 & 59.1 \\
\hline
19 & 60.5 \\
\hline
\end{tabular}
\][/tex]



Answer :

To find the linear regression line [tex]\(\hat{y} = ax + b\)[/tex] for the given data points, we need to determine the slope [tex]\(a\)[/tex] and the intercept [tex]\(b\)[/tex]. We will follow these steps:

1. Calculate the means of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ \bar{x} \text{ (mean of } x \text{ values)} = 9.429 \][/tex]
[tex]\[ \bar{y} \text{ (mean of } y \text{ values)} = 74.671 \][/tex]

2. Calculate the terms needed for the numerator of the slope [tex]\(a\)[/tex]:
[tex]\[ \text{Numerator} = \sum (x_i - \bar{x})(y_i - \bar{y}) = -470.314 \][/tex]

3. Calculate the terms needed for the denominator of the slope [tex]\(a\)[/tex]:
[tex]\[ \text{Denominator} = \sum (x_i - \bar{x})^2 = 233.714 \][/tex]

4. Calculate the slope [tex]\(a\)[/tex]:
[tex]\[ a = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{-470.314}{233.714} = -2.012 \][/tex]

5. Calculate the intercept [tex]\(b\)[/tex]:
[tex]\[ b = \bar{y} - a \cdot \bar{x} = 74.671 - (-2.012 \cdot 9.429) = 93.645 \][/tex]

Thus, the linear regression line that describes the relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] is:
[tex]\[ \boxed{\hat{y} = -2.012x + 93.645} \][/tex]

The slope [tex]\(a\)[/tex] is [tex]\(-2.012\)[/tex] and the intercept [tex]\(b\)[/tex] is [tex]\(93.645\)[/tex], both rounded to the nearest thousandth.