Gathering this information, they survey the members of the club. Each person will administer the survey to 15 randomly selected members and record how many days in the past month those members used the indoor facilities. Their data is shown in the table below.

\begin{tabular}{|c|c|}
\hline
Number of Days & Members \\
\hline 3 & 22 \\
\hline 6 & 4 \\
\hline 8 & 7 \\
\hline 11 & 8 \\
\hline 12 & 12 \\
\hline 8 & 15 \\
\hline 6 & 10 \\
\hline 3 & 7 \\
\hline 10 & 9 \\
\hline 5 & 6 \\
\hline 14 & 13 \\
\hline 9 & 3 \\
\hline 10 & 8 \\
\hline 8 & 10 \\
\hline & 10 \\
\hline
\end{tabular}

Part A

Use the graphing tool to create a histogram of Gretchen's data. Use eight bins for your histogram.



Answer :

Sure, let's create a histogram step by step from the given data:

### Step-by-step Solution:

#### Step 1: Gather the Data
The data collected by Manuel is as follows:
3, 22, 6, 4, 8, 7, 11, 8, 12, 12, 8, 15, 6, 10, 3, 7, 10, 9, 5, 6, 14, 13, 9, 3, 10, 8, 8, 10

#### Step 2: Determine the Range and Bins
We need to create 8 bins for this histogram. First, we find the minimum and maximum values in the data.

- Minimum Value: 3
- Maximum Value: 22

The range of the data is:
[tex]\[ \text{Range} = \text{Maximum Value} - \text{Minimum Value} = 22 - 3 = 19 \][/tex]

Since we need 8 bins, we divide the range by the number of bins to determine the bin width:
[tex]\[ \text{Bin Width} = \frac{\text{Range}}{\text{Number of Bins}} = \frac{19}{8} \approx 2.375 \][/tex]

To make it easier, we can round this to around 2 or a little more for uniformity. Let’s assume a bin width of 2.5 for simplicity. We define the bins as follows:
- Bin 1: [tex]\[ 3 - 5.5 \][/tex]
- Bin 2: [tex]\[ 5.5 - 8 \][/tex]
- Bin 3: [tex]\[ 8 - 10.5 \][/tex]
- Bin 4: [tex]\[ 10.5 - 13 \][/tex]
- Bin 5: [tex]\[ 13 - 15.5 \][/tex]
- Bin 6: [tex]\[ 15.5 - 18 \][/tex]
- Bin 7: [tex]\[ 18 - 20.5 \][/tex]
- Bin 8: [tex]\[ 20.5 - 23 \][/tex]

#### Step 3: Tally the Data into Bins
Sort the data into these bins:

- Bin 1: [tex]\( 3, 3, 3, 4, 5 \)[/tex] → 5 values
- Bin 2: [tex]\( 6, 6, 6, 7, 7, 8, 8, 8 \)[/tex] → 8 values
- Bin 3: [tex]\( 8, 8, 9, 9, 10, 10, 10, 10 \)[/tex] → 8 values
- Bin 4: [tex]\( 11, 12, 12 \)[/tex] → 3 values
- Bin 5: [tex]\( 13, 14, 15 \)[/tex] → 3 values
- Bin 6: [tex]\( 15 \)[/tex] → 1 value
- Bin 7: -- 0 values
- Bin 8: [tex]\( 22 \)[/tex] → 1 value

#### Step 4: Plot the Histogram

| Bin Range | Count |
|:------------- |------:|
| 3 - 5.5 | 5 |
| 5.5 - 8 | 8 |
| 8 - 10.5 | 8 |
| 10.5 - 13 | 3 |
| 13 - 15.5 | 3 |
| 15.5 - 18 | 1 |
| 18 - 20.5 | 0 |
| 20.5 - 23 | 1 |

To visualize this as a histogram, we draw bars where the height of each bar represents the frequency of data in each bin:

```
Frequency
10 |
9 |
8 | #######
7 | #######
6 | #######
5 | ###
4 | ###
3 | ### ### ###
2 | ### ### ###
1 | ### ### ### #
-----------------------------------
Bin Ranges (3-5.5, 5.5-8, etc...)
```

Feel free to use any graphing tool, including spreadsheets or graphing calculators, to accurately plot these bins and their frequencies to create a visual representation of the histogram.