\begin{tabular}{|c|c|}
\hline Manuel's Data & Gretchen's Data \\
\hline 3 & 22 \\
\hline 6 & 4 \\
\hline 8 & 7 \\
\hline 11 & 8 \\
\hline 12 & 12 \\
\hline 8 & 15 \\
\hline 6 & 10 \\
\hline 3 & 7 \\
\hline 10 & 9 \\
\hline 5 & 6 \\
\hline 14 & 13 \\
\hline 9 & 3 \\
\hline 10 & 8 \\
\hline 8 & 10 \\
\hline
\end{tabular}

Complete the table for Manuel's and Gretchen's data sets. Type the correct answer in each box. Use numerals instead of words.

\begin{tabular}{|l||l|c|}
\hline & Manuel's Data Set & Gretchen's Data Set \\
\hline Mean & [tex]$\square$[/tex] & 9.6 \\
\hline
\end{tabular}



Answer :

To find the mean of Manuel's data set, we need to follow these steps:

1. Sum the values in Manuel's data set:
Manuel's data is: 3, 6, 8, 11, 12, 8, 6, 3, 10, 5, 14, 9, 10, 8

2. Calculate the sum:
[tex]\( 3 + 6 + 8 + 11 + 12 + 8 + 6 + 3 + 10 + 5 + 14 + 9 + 10 + 8 \)[/tex]

3. Count the number of values in the data set:
There are 14 values in Manuel's data set.

4. Divide the sum by the number of values to find the mean:
[tex]\[ \frac{\text{Sum of the values}}{\text{Number of values}} \][/tex]

Thus, when we sum up all the numbers and divide by 14, we get:

[tex]\[ \frac{113}{14} = 8.071428571428571 \][/tex]

So, the mean of Manuel's data set is approximately [tex]\( 8.07 \)[/tex].

Therefore, the table is completed as follows:
[tex]\[ \begin{tabular}{|l||l|c|} \hline & Manuel's Data Set & Gretchen's Data Set \\ \hline Mean & 8.07 & 9.6 \\ \hline \end{tabular} \][/tex]