Graph the solution set for this inequality:

[tex]\[ -6x - 3y \leq -18 \][/tex]

Step 1: Identify the [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-intercepts of the boundary line.

When [tex]\( x = 0 \)[/tex], [tex]\( y = \square \)[/tex]

When [tex]\( y = 0 \)[/tex], [tex]\( x = \square \)[/tex]

Check



Answer :

To determine the solution set for the inequality [tex]\(-6x - 3y \leq -18\)[/tex], let's first identify the intercepts of the boundary line.

### Finding the [tex]\(x\)[/tex]-intercept:

The [tex]\(x\)[/tex]-intercept occurs when [tex]\(y = 0\)[/tex]. Substitute [tex]\(y = 0\)[/tex] into the equation:

[tex]\[ -6x - 3(0) = -18 \][/tex]

This simplifies to:

[tex]\[ -6x = -18 \][/tex]

Solving for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{-18}{-6} = 3 \][/tex]

So, the [tex]\(x\)[/tex]-intercept is [tex]\((3, 0)\)[/tex].

### Finding the [tex]\(y\)[/tex]-intercept:

The [tex]\(y\)[/tex]-intercept occurs when [tex]\(x = 0\)[/tex]. Substitute [tex]\(x = 0\)[/tex] into the equation:

[tex]\[ -6(0) - 3y = -18 \][/tex]

This simplifies to:

[tex]\[ -3y = -18 \][/tex]

Solving for [tex]\(y\)[/tex]:

[tex]\[ y = \frac{-18}{-3} = 6 \][/tex]

So, the [tex]\(y\)[/tex]-intercept is [tex]\((0, 6)\)[/tex].

### Step 1 Summary:

When [tex]\(x = 0\)[/tex], [tex]\(y = 6\)[/tex], and when [tex]\(y = 0\)[/tex], [tex]\(x = 3\)[/tex].

This gives us the intercepts:

[tex]\[ \begin{aligned} & \text{When } x = 0, y = 6 \\ & \text{When } y = 0, x = 3 \end{aligned} \][/tex]

These intercepts will help us graph the boundary line.