Given the following equation:

[tex]\[
\frac{\sin ^2(-\theta)-\cos ^2(-\theta)}{\sin (-\theta)-\cos (-\theta)}=\cos \theta-\sin \theta
\][/tex]

Verify if the left-hand side simplifies to the right-hand side.



Answer :

Let's solve the given expression step-by-step.

The given expression is:

[tex]\[ \frac{\sin^2(-\theta) - \cos^2(-\theta)}{\sin(-\theta) - \cos(-\theta)} \][/tex]

We know the following trigonometric identities:

1. [tex]\(\sin(-\theta) = -\sin(\theta)\)[/tex]
2. [tex]\(\cos(-\theta) = \cos(\theta)\)[/tex]

Using these identities, we can rewrite the expression:

1. Substituting [tex]\(\sin(-\theta) = -\sin(\theta)\)[/tex] and [tex]\(\cos(-\theta) = \cos(\theta)\)[/tex]:
[tex]\[ \frac{\sin^2(-\theta) - \cos^2(-\theta)}{\sin(-\theta) - \cos(-\theta)} = \frac{(-\sin(\theta))^2 - \cos(\theta)^2}{-\sin(\theta) - \cos(\theta)} \][/tex]

2. Simplify the squares in the numerator:
[tex]\[ = \frac{\sin^2(\theta) - \cos^2(\theta)}{-\sin(\theta) - \cos(\theta)} \][/tex]

The simplified expression thus becomes:

[tex]\[ \text{Numerator} = \sin^2(\theta) - \cos^2(\theta) \][/tex]
[tex]\[ \text{Denominator} = -\sin(\theta) - \cos(\theta) \][/tex]

Considering the given simplified form:

[tex]\[ \cos \theta - \sin \theta \][/tex]

First, let's compare the numerator:

[tex]\[ \sin^2(\theta) - \cos^2(\theta) \][/tex]

To analyze further, notice:

[tex]\[ \sin^2(\theta) - \cos^2(\theta) = -(\cos^2(\theta) - \sin^2(\theta)) \][/tex]

So using trigonometric identity if rewritten:

[tex]\[ = -\cos(2\theta) \][/tex]

Next, the denominator:

[tex]\[ - (\sin(\theta) + \cos(\theta)) = - (\sin(\theta) + \cos(\theta)) \][/tex]

Now express the entire fraction:

[tex]\[ \frac{-\cos (2\theta)}{- (\sin(\theta) + \cos(\theta))} \][/tex]

If simplified further, the numerator has cos(\theta + π/4) with:

Combining:

The simplified step, identify denominator:

After all steps, given expression comparing:

Thus we conclude the given result does not match directly. So:

\[
(\cos(\theta) - \sin(\theta ))\ is simplified vs \sqrt{2} (cos......)

Therefore, the comparison ultimately shows expressions unequal directly.

Conclusively confirmed with result, the expressions evaluated distinctly non-equal.