Answer :

To solve the problem, we need to determine the values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] that satisfy the conditions given:

1. [tex]\(\frac{p}{q} = \frac{5}{2}\)[/tex]
2. [tex]\(2p + q = 108\)[/tex]

Let's proceed step-by-step:

### Step 1: Express [tex]\( q \)[/tex] in terms of [tex]\( p \)[/tex]

From the first condition:
[tex]\[ \frac{p}{q} = \frac{5}{2} \][/tex]
This can be rearranged to:
[tex]\[ p = \frac{5}{2} q \][/tex]

### Step 2: Substitute [tex]\( q \)[/tex] in the second equation

We substitute the expression for [tex]\( p \)[/tex] into the second equation:
[tex]\[ 2p + q = 108 \][/tex]
Substitute [tex]\( p = \frac{5}{2} q \)[/tex]:
[tex]\[ 2 \left( \frac{5}{2} q \right) + q = 108 \][/tex]
This simplifies to:
[tex]\[ 5q + q = 108 \][/tex]
Combining like terms:
[tex]\[ 6q = 108 \][/tex]
Solving for [tex]\( q \)[/tex], we get:
[tex]\[ q = \frac{108}{6} = 18 \][/tex]

### Step 3: Find the value of [tex]\( p \)[/tex]

Now that we have [tex]\( q = 18 \)[/tex], we use the expression for [tex]\( p \)[/tex] again:
[tex]\[ p = \frac{5}{2} q = \frac{5}{2} \times 18 = 45 \][/tex]

### Step 4: Calculate [tex]\( p - q \)[/tex]

Finally, we calculate [tex]\( p - q \)[/tex]:
[tex]\[ p - q = 45 - 18 = 27 \][/tex]

Therefore, the value of [tex]\( p - q \)[/tex] is [tex]\( \boxed{27} \)[/tex].