Find [tex]\( f \)[/tex].

[tex]\[
\begin{array}{l}
\quad f^{\prime}(x)=\sqrt{x}(6+10x), \quad f(1)=9 \\
f(x)=\square
\end{array}
\][/tex]



Answer :

To find the function [tex]\(f(x)\)[/tex] given that [tex]\( f'(x) = \sqrt{x}(6 + 10x) \)[/tex] and the initial condition [tex]\( f(1) = 9 \)[/tex], follow these steps:

1. Identify the integrand:
The derivative of the function is given by [tex]\( f'(x) = \sqrt{x}(6 + 10x) \)[/tex].

2. Integrate [tex]\( f'(x) \)[/tex] to find [tex]\( f(x) \)[/tex]:
To determine [tex]\( f(x) \)[/tex], we integrate [tex]\( f'(x) \)[/tex] with respect to [tex]\( x \)[/tex].

[tex]\[ f(x) = \int \sqrt{x}(6 + 10x) \, dx \][/tex]

3. Break down the integrand:
Separate the integrand into two parts to simplify the integration:

[tex]\[ \int \sqrt{x}(6 + 10x) \, dx = \int 6\sqrt{x} \, dx + \int 10x^{3/2} \, dx \][/tex]

4. Integrate each term separately:

- For the first term: [tex]\( \int 6\sqrt{x} \, dx = 6 \int x^{1/2} \, dx \)[/tex]

[tex]\[ 6 \int x^{1/2} \, dx = 6 \cdot \frac{x^{3/2}}{3/2} = 6 \cdot \frac{2}{3} x^{3/2} = 4x^{3/2} \][/tex]

- For the second term: [tex]\( \int 10x^{3/2} \, dx \)[/tex]

[tex]\[ 10 \int x^{3/2} \, dx = 10 \cdot \frac{x^{5/2}}{5/2} = 10 \cdot \frac{2}{5} x^{5/2} = 4x^{5/2} \][/tex]

5. Combine the integrated parts:

[tex]\[ f(x) = 4x^{3/2} + 4x^{5/2} + C \][/tex]

Here, [tex]\( C \)[/tex] is the constant of integration.

6. Use the initial condition to determine [tex]\( C \)[/tex]:
Given [tex]\( f(1) = 9 \)[/tex]:

[tex]\[ 9 = 4(1)^{3/2} + 4(1)^{5/2} + C \][/tex]

Simplify the expression:

[tex]\[ 9 = 4 \cdot 1 + 4 \cdot 1 + C = 8 + C \implies C = 9 - 8 = 1 \][/tex]

7. Write the final function [tex]\( f(x) \)[/tex]:

[tex]\[ f(x) = 4x^{3/2} + 4x^{5/2} + 1 \][/tex]

Thus, the function [tex]\( f(x) \)[/tex] is:

[tex]\[ \boxed{f(x) = 4x^{3/2} + 4x^{5/2} + 1} \][/tex]