The circle passes through the point [tex]$(-4,3)$[/tex]. What is its radius?

Choose one answer:
A. 2
B. [tex]$\sqrt{2}$[/tex]
C. [tex]$\sqrt{2} \pi$[/tex]
D. [tex]$2 \pi$[/tex]



Answer :

Sure! Let's determine the radius of a circle that passes through the point [tex]\((-4, 3)\)[/tex].

1. Identify the coordinates: The point given is [tex]\((-4, 3)\)[/tex].

2. Identify the center of the circle: Since no specific center is mentioned, we will assume that the center of the circle is at the origin, [tex]\((0, 0)\)[/tex].

3. Formula for the radius: The radius [tex]\(r\)[/tex] can be found using the distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]. In this case, the points are [tex]\((0, 0)\)[/tex] and [tex]\((-4, 3)\)[/tex].

The distance formula is given by:
[tex]\[ r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

4. Plug in the values:
[tex]\[ r = \sqrt{(-4 - 0)^2 + (3 - 0)^2} \][/tex]

5. Simplify the expression:
[tex]\[ r = \sqrt{(-4)^2 + 3^2} \][/tex]
[tex]\[ r = \sqrt{16 + 9} \][/tex]
[tex]\[ r = \sqrt{25} \][/tex]

6. Calculate the square root:
[tex]\[ r = 5 \][/tex]

So, the radius of the circle passing through the point [tex]\((-4, 3)\)[/tex] is [tex]\(5\)[/tex].

Answer: None of the options (A, B, C, D) are correct, as the radius is [tex]\(5\)[/tex].