Simplify:

[tex]\[
3 \sqrt{108} + 2 \sqrt{75} - \sqrt{48}
\][/tex]

A. [tex]\(7 \sqrt{3}\)[/tex]

B. [tex]\(12 \sqrt{3}\)[/tex]

C. [tex]\(24 \sqrt{3}\)[/tex]

D. [tex]\(32 \sqrt{3}\)[/tex]



Answer :

To simplify the expression [tex]\( 3 \sqrt{108} + 2 \sqrt{75} - \sqrt{48} \)[/tex], let's go through each term step-by-step.

Step 1: Simplify [tex]\(\sqrt{108}\)[/tex]

First, we'll simplify [tex]\(\sqrt{108}\)[/tex]:
[tex]\[ \sqrt{108} = \sqrt{36 \times 3} = \sqrt{36} \times \sqrt{3} = 6\sqrt{3} \][/tex]
Therefore,
[tex]\[ 3 \sqrt{108} = 3 \times 6\sqrt{3} = 18\sqrt{3} \][/tex]

Step 2: Simplify [tex]\(\sqrt{75}\)[/tex]

Next, let's simplify [tex]\(\sqrt{75}\)[/tex]:
[tex]\[ \sqrt{75} = \sqrt{25 \times 3} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3} \][/tex]
Therefore,
[tex]\[ 2 \sqrt{75} = 2 \times 5\sqrt{3} = 10\sqrt{3} \][/tex]

Step 3: Simplify [tex]\(\sqrt{48}\)[/tex]

Finally, we'll simplify [tex]\(\sqrt{48}\)[/tex]:
[tex]\[ \sqrt{48} = \sqrt{16 \times 3} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3} \][/tex]
Therefore,
[tex]\[ -\sqrt{48} = -4\sqrt{3} \][/tex]

Step 4: Combine All Terms

Now we add up all the simplified terms:
[tex]\[ 3 \sqrt{108} + 2 \sqrt{75} - \sqrt{48} = 18\sqrt{3} + 10\sqrt{3} - 4\sqrt{3} \][/tex]

Combine the coefficients of [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ 18\sqrt{3} + 10\sqrt{3} - 4\sqrt{3} = (18 + 10 - 4)\sqrt{3} = 24\sqrt{3} \][/tex]

Thus, the simplified form of the expression [tex]\( 3 \sqrt{108} + 2 \sqrt{75} - \sqrt{48} \)[/tex] is:

[tex]\[ \boxed{24\sqrt{3}} \][/tex]