Consider function [tex]\( h \)[/tex].

[tex]\[ h(x) = -\frac{3}{4}(x+7)^2 + 5 \][/tex]

Which statements are true about function [tex]\( h \)[/tex]? Select all the correct answers.

A. The vertex is [tex]\((-7, 5)\)[/tex].

B. The axis of symmetry is [tex]\( x = -7 \)[/tex].

C. The maximum value is 5.

D. The range is [tex]\((-\infty, 5]\)[/tex].

E. The domain is [tex]\((-\infty, \infty)\)[/tex].

F. The minimum value is 5.



Answer :

Let's carefully analyze the function [tex]\(h(x) = -\frac{3}{4}(x+7)^2 + 5\)[/tex].

### Step-by-Step Explanation:

1. Finding the Vertex:
The given function is in the vertex form [tex]\( h(x) = a(x - h)^2 + k \)[/tex], where [tex]\( a = -\frac{3}{4} \)[/tex], [tex]\( h = -7 \)[/tex], and [tex]\( k = 5 \)[/tex].

The vertex of the parabola [tex]\( h(x) \)[/tex] is given by the point [tex]\((-h, k)\)[/tex].

Here, [tex]\((-h, k)\)[/tex] translates to [tex]\((-(-7), 5) = (-7, 5)\)[/tex].

True Statement: The vertex is [tex]\((-7, 5)\)[/tex].
False Statement: The vertex is [tex]\((-7, -5)\)[/tex].

2. Axis of Symmetry:
The axis of symmetry for a parabola of the form [tex]\( h(x) = a(x - h)^2 + k \)[/tex] is the vertical line [tex]\( x = h \)[/tex].

For our function, [tex]\( h = -7 \)[/tex].

True Statement: The axis of symmetry is [tex]\( x = -7 \)[/tex].

3. Maximum Value:
Since the coefficient of [tex]\( (x+7)^2 \)[/tex] is negative ([tex]\( a = -\frac{3}{4} \)[/tex]), the parabola opens downwards.

The maximum value of [tex]\( h(x) \)[/tex] is at the vertex, which is [tex]\( k = 5 \)[/tex].

True Statement: The maximum value is 5.

4. Range:
For a downward-opening parabola [tex]\( h(x) = -\frac{3}{4}(x+7)^2 + 5 \)[/tex], the highest value is at the vertex, which is 5.

The function takes all values less than or equal to 5.

True Statement: The range is [tex]\((-\infty, 5]\)[/tex].
False Statement: The range is [tex]\([5, \infty)\)[/tex].

5. Domain:
Quadratic functions of the form [tex]\( h(x) = a(x - h)^2 + k \)[/tex] have all real numbers as their domain.

True Statement: The domain is [tex]\((-\infty, \infty)\)[/tex].

6. Minimum Value:
Since the parabola opens downwards, it does not have a minimum value within the real number range; it keeps decreasing indefinitely.

False Statement: The minimum value is 5.


### Summary of True Statements:
- The axis of symmetry is [tex]\( x = -7 \)[/tex].
- The maximum value is 5.
- The range is [tex]\((-\infty, 5]\)[/tex].
- The domain is [tex]\((-\infty, \infty)\)[/tex].

### Summary of False Statements:
- The vertex is [tex]\((-7, -5)\)[/tex].
- The range is [tex]\([5, \infty)\)[/tex].
- The minimum value is 5.

Based on these steps, we have determined the correctness of each statement about the function [tex]\( h(x) \)[/tex].