Work out the value of [tex]\left(9 \times 10^{-4}\right) \times \left(3 \times 10^7\right)[/tex]. Give your answer in standard form.



Answer :

Sure, let's break this problem down step-by-step and find the solution together.

We need to determine the value of [tex]\(\left(9 \times 10^{-4}\right) \times \left(3 \times 10^7\right)\)[/tex] and express it in standard form.

1. Identify each term:
- The first term is [tex]\(9 \times 10^{-4}\)[/tex].
- The second term is [tex]\(3 \times 10^7\)[/tex].

2. Express each term in decimal form:
- [tex]\(9 \times 10^{-4} = 0.0009\)[/tex]
- [tex]\(3 \times 10^7 = 30,000,000\)[/tex]

3. Calculate the product of these decimal numbers:
[tex]\[ 0.0009 \times 30,000,000 \][/tex]

4. Multiplying the decimal numbers:
[tex]\[ 0.0009 \times 30,000,000 = 27,000 \][/tex]

5. Express the result [tex]\(27,000\)[/tex] in standard form:
Standard form is a way of writing numbers as a product of a coefficient and a power of 10. The coefficient must be a number between 1 and 10.

[tex]\(27,000\)[/tex] can be expressed as:
[tex]\[ 27,000 = 2.7 \times 10^4 \][/tex]

Here, the coefficient is [tex]\(2.7\)[/tex] and the exponent is [tex]\(4\)[/tex].

So, the final answer to the problem [tex]\(\left(9 \times 10^{-4}\right) \times \left(3 \times 10^7\right)\)[/tex] in standard form is:

[tex]\[ 2.7 \times 10^4 \][/tex]