Select the correct answer.

A parabola has a directrix of [tex]$x=\frac{11}{4}$[/tex] and a vertex at [tex]$(0,3)$[/tex]. What is an equation of the parabola?

A. [tex]x=-\frac{1}{11}(y-3)^2[/tex]

B. [tex]x=\frac{1}{11}(y+3)^2[/tex]

C. [tex]y=11x^2[/tex]

D. [tex]y=-\frac{1}{11}(x-3)^2[/tex]



Answer :

To determine the equation of a parabola given its directrix and vertex, let's follow these steps:

1. Identify the given data:
- Directrix: [tex]\( x = \frac{11}{4} \)[/tex]
- Vertex: [tex]\( (0, 3) \)[/tex]

2. Determine the distance from the vertex to the directrix:
- Calculate the value of [tex]\( p \)[/tex], where [tex]\( p \)[/tex] is the distance from the vertex to the directrix.
- [tex]\( p = \left| \frac{11}{4} - 0 \right| \)[/tex]
- [tex]\( p = \frac{11}{4} \)[/tex]

3. Formula for the parabola with a vertical directrix:
- For parabolas with a vertical directrix of the form [tex]\( x = k \)[/tex], the equation can be expressed as:
[tex]\[ x = \frac{1}{4p}(y-k)^2 + h \][/tex]
- Given our calculated [tex]\( p \)[/tex]:
[tex]\[ 4p = 4 \times \frac{11}{4} = 11 \][/tex]
- Therefore, the coefficient in our equation becomes:
[tex]\[ \frac{1}{4p} = \frac{1}{11} \][/tex]

4. Substitute the vertex coordinates [tex]\((h, k)\)[/tex]:
- In this example, [tex]\( h = 0 \)[/tex] and [tex]\( k = 3 \)[/tex].

5. Construct the equation of the parabola:
- Substituting the values, the equation becomes:
[tex]\[ x = \frac{1}{11} (y - 3)^2 + 0 \][/tex]
- Simplifying the equation (since adding 0 has no effect):
[tex]\[ x = \frac{1}{11} (y - 3)^2 \][/tex]

6. Compare with the given options:
- [tex]\( x = -\frac{1}{11}(y-3)^2 \)[/tex]
- [tex]\( x = \frac{1}{11}(y+3)^2 \)[/tex]
- [tex]\( y = 11 x^2 \)[/tex]
- [tex]\( y = -\frac{1}{11}(x-3)^2 \)[/tex]

The correct equation matching the derived equation [tex]\( x = \frac{1}{11}(y-3)^2 \)[/tex] is the first option:
[tex]\[ x = -\frac{1}{11}(y-3)^2 \][/tex]

Therefore, the correct answer is:
[tex]\[ x = -\frac{1}{11}(y-3)^2 \][/tex]