Answer :

To find [tex]\(a^2 + b^2 + c^2\)[/tex] given the equations [tex]\(a + b + c = 9\)[/tex] and [tex]\(ab + bc + ca = 26\)[/tex], follow these steps:

1. Start with the identity:
[tex]\[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \][/tex]

2. Substitute the known values into the identity:
[tex]\[ 9^2 = a^2 + b^2 + c^2 + 2 \cdot 26 \][/tex]

3. Simplify the left-hand side:
[tex]\[ 81 = a^2 + b^2 + c^2 + 52 \][/tex]

4. Isolate [tex]\(a^2 + b^2 + c^2\)[/tex]:
[tex]\[ a^2 + b^2 + c^2 = 81 - 52 \][/tex]

5. Compute the final result:
[tex]\[ a^2 + b^2 + c^2 = 29 \][/tex]

Hence, [tex]\(a^2 + b^2 + c^2\)[/tex] is [tex]\(29\)[/tex].