Imagine an alternate universe where the value of the Planck constant is [tex]$6.62607 \times 10^6 J \cdot s$[/tex].

In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics?

\begin{tabular}{|c|c|}
\hline
Object & Quantum or Classical? \\
\hline
\begin{tabular}{l}
A virus with a mass of [tex]$1.1 \times 10^{-17} \, \text{kg}, 360 \, \text{nm}$[/tex] wide, \\
moving at [tex]$1.30 \, \mu \text{m/s}$[/tex].
\end{tabular} &
\begin{tabular}{l}
Classical \\
Quantum
\end{tabular} \\
\hline
\begin{tabular}{l}
A car with a mass of [tex]$1100 \, \text{kg}, 4.9 \, \text{m}$[/tex] long, moving at \\
[tex]$66.0 \, \text{km/h}$[/tex].
\end{tabular} &
\begin{tabular}{l}
Classical \\
Quantum
\end{tabular} \\
\hline
\begin{tabular}{l}
A grain of sand with a mass of [tex]$205 \, \text{mg}, 625 \, \mu \text{m}$[/tex] wide, \\
moving at [tex]$1.00 \, \text{mm/s}$[/tex].
\end{tabular} &
\begin{tabular}{l}
Classical \\
Quantum
\end{tabular} \\
\hline
\begin{tabular}{l}
An atom with a mass of [tex]$1.0 \times 10^{-26} \, \text{kg}, 119 \, \text{pm}$[/tex] wide, \\
moving at [tex]$366 \, \text{m/s}$[/tex].
\end{tabular} &
\begin{tabular}{l}
Classical \\
Quantum
\end{tabular} \\
\hline
\end{tabular}



Answer :

To determine whether each object would require quantum mechanics (showing wave-particle duality) or can be adequately described by classical mechanics, we use the de Broglie wavelength. The de Broglie wavelength [tex]\(\lambda\)[/tex] is given by:

[tex]\[ \lambda = \frac{h}{mv} \][/tex]

where:
- [tex]\(h\)[/tex] is the Planck constant,
- [tex]\(m\)[/tex] is the mass, and
- [tex]\(v\)[/tex] is the velocity of the object.

In this alternate universe, the Planck constant [tex]\(h = 6.62607 \times 10^6 \, J \cdot s\)[/tex].

An arbitrary threshold for deciding quantum vs classical behavior is set at [tex]\(1 \times 10^{-9} \, m\)[/tex]. If the de Broglie wavelength of an object is greater than [tex]\(1 \times 10^{-9} \, m\)[/tex], the object exhibits quantum behavior. If it is less than this threshold, the object can be described by classical mechanics.

Let's examine each object:

1. Virus
- Mass: [tex]\(1.1 \times 10^{-17} \, kg\)[/tex]
- Velocity: [tex]\(1.30 \times 10^{-6} \, m/s\)[/tex]

Calculating the de Broglie wavelength:
[tex]\[ \lambda_{\text{virus}} = \frac{6.62607 \times 10^6}{(1.1 \times 10^{-17}) \times (1.30 \times 10^{-6})} \approx 4.63 \times 10^{29} \, m \][/tex]

Since [tex]\(4.63 \times 10^{29} \, m\)[/tex] is much greater than [tex]\(1 \times 10^{-9} \, m\)[/tex], the virus shows quantum properties.

2. Car
- Mass: [tex]\(1100 \, kg\)[/tex]
- Velocity: [tex]\(66.0 \, km/h = 18.33 \, m/s\)[/tex]

Calculating the de Broglie wavelength:
[tex]\[ \lambda_{\text{car}} = \frac{6.62607 \times 10^6}{(1100) \times (18.33)} \approx 328.57 \, m \][/tex]

Since [tex]\(328.57 \, m\)[/tex] is greater than [tex]\(1 \times 10^{-9} \, m\)[/tex], the car surprisingly shows quantum properties.

3. Grain of Sand
- Mass: [tex]\(205 \times 10^{-6} \, kg\)[/tex]
- Velocity: [tex]\(1.00 \times 10^{-3} \, m/s\)[/tex]

Calculating the de Broglie wavelength:
[tex]\[ \lambda_{\text{sand}} = \frac{6.62607 \times 10^6}{(205 \times 10^{-6}) \times (1.00 \times 10^{-3})} \approx 3.23 \times 10^{13} \, m \][/tex]

Since [tex]\(3.23 \times 10^{13} \, m\)[/tex] is much greater than [tex]\(1 \times 10^{-9} \, m\)[/tex], the grain of sand shows quantum properties.

4. Atom
- Mass: [tex]\(1.0 \times 10^{-26} \, kg\)[/tex]
- Velocity: [tex]\(366 \, m/s\)[/tex]

Calculating the de Broglie wavelength:
[tex]\[ \lambda_{\text{atom}} = \frac{6.62607 \times 10^6}{(1.0 \times 10^{-26}) \times (366)} \approx 1.81 \times 10^{30} \, m \][/tex]

Since [tex]\(1.81 \times 10^{30} \, m\)[/tex] is much greater than [tex]\(1 \times 10^{-9} \, m\)[/tex], the atom shows quantum properties.

Summary:

| object | quantum or classical? |
|--------|-----------------------|
| A virus with a mass of [tex]\(1.1 \times 10^{-17} \, kg\)[/tex], moving at [tex]\(1.30 \, \mu m/s\)[/tex]. | quantum |
| A car with a mass of [tex]\(1100 \, kg\)[/tex], moving at [tex]\(66.0 \, km/h\)[/tex]. | quantum |
| A grain of sand with a mass of [tex]\(205 \, mg\)[/tex], moving at [tex]\(1.00 \, mm/s\)[/tex]. | quantum |
| An atom with a mass of [tex]\(1.0 \times 10^{-26} \, kg\)[/tex], moving at [tex]\(366 \, m/s\)[/tex]. | quantum |

In this alternate universe, all the given objects exhibit quantum properties due to the extraordinarily high value of the Planck constant.