What is the formula for the volume of a right cone with base area [tex]B[/tex] and height [tex]h[/tex]?

A. [tex]V=\frac{1}{3} B h[/tex]
B. [tex]V=-\frac{1}{3} B h[/tex]
C. [tex]v=2 B h^2[/tex]
D. [tex]y=8 h[/tex]



Answer :

To find the formula for the volume of a right cone with base area [tex]\( B \)[/tex] and height [tex]\( h \)[/tex], let's review the standard formula for the volume of a cone.

The volume [tex]\( V \)[/tex] of a right cone is given by:

[tex]\[ V = \frac{1}{3} \times (\text{base area}) \times (\text{height}) \][/tex]

Here, the base area is denoted by [tex]\( B \)[/tex] and the height is denoted by [tex]\( h \)[/tex]. Therefore, substituting these symbols into the formula, the volume [tex]\( V \)[/tex] can be expressed as:

[tex]\[ V = \frac{1}{3} B h \][/tex]

Now, let's examine the given answer choices:

A. [tex]\( V = \frac{1}{3} B h \)[/tex]
B. [tex]\( V = -\frac{1}{3} B h \)[/tex]
C. [tex]\( V = 2 B h^2 \)[/tex]
D. [tex]\( y = 8 h \)[/tex]

From the analysis above, the correct formula is given by option A:

[tex]\[ V = \frac{1}{3} B h \][/tex]

Thus, the correct answer to the question is:
A. [tex]\( V = \frac{1}{3} B h \)[/tex]