Answer :
To find [tex]\(LR\)[/tex], given [tex]\(LP = 15\)[/tex] and [tex]\(PR = 9\)[/tex], we can use the Segment Addition Postulate. The Segment Addition Postulate states that if a point [tex]\(P\)[/tex] lies on a line segment [tex]\(LR\)[/tex], then the length of [tex]\(LR\)[/tex] is the sum of the lengths of [tex]\(LP\)[/tex] and [tex]\(PR\)[/tex].
In other words,
[tex]\[ LR = LP + PR \][/tex]
Let's substitute the given values into the equation:
[tex]\[ LP = 15 \][/tex]
[tex]\[ PR = 9 \][/tex]
Now, applying the Segment Addition Postulate, we get:
[tex]\[ LR = LP + PR \][/tex]
[tex]\[ LR = 15 + 9 \][/tex]
Adding these together:
[tex]\[ LR = 24 \][/tex]
So, the correct answer is [tex]\(LR = 24\)[/tex] because [tex]\(LP + PR = LR\)[/tex] according to the Segment Addition Postulate, and [tex]\(15 + 9 = 24\)[/tex] using substitution.
In other words,
[tex]\[ LR = LP + PR \][/tex]
Let's substitute the given values into the equation:
[tex]\[ LP = 15 \][/tex]
[tex]\[ PR = 9 \][/tex]
Now, applying the Segment Addition Postulate, we get:
[tex]\[ LR = LP + PR \][/tex]
[tex]\[ LR = 15 + 9 \][/tex]
Adding these together:
[tex]\[ LR = 24 \][/tex]
So, the correct answer is [tex]\(LR = 24\)[/tex] because [tex]\(LP + PR = LR\)[/tex] according to the Segment Addition Postulate, and [tex]\(15 + 9 = 24\)[/tex] using substitution.