A cone has a base radius of length [tex]\( r \)[/tex] and a perpendicular height length [tex]\( h \)[/tex]. If the height remains the same and the radius is multiplied by 3, then the volume is multiplied by:

A. 9
B. 27
C. [tex]\(\frac{4}{3}\)[/tex]
D. 2



Answer :

Let's consider the initial volume of the cone and how it changes when the radius is multiplied by 3 while the height remains the same.

1. Initial Volume Calculation:
The volume [tex]\( V \)[/tex] of a cone with radius [tex]\( r \)[/tex] and height [tex]\( h \)[/tex] is given by the formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

2. Initial Volume:
When the radius is [tex]\( r \)[/tex] and the height is [tex]\( h \)[/tex], the volume [tex]\( V_1 \)[/tex] can be represented as:
[tex]\[ V_1 = \frac{1}{3} \pi r^2 h \][/tex]

3. New Radius:
The radius is multiplied by 3, so the new radius is [tex]\( 3r \)[/tex].

4. New Volume Calculation:
Using the same height [tex]\( h \)[/tex] and the new radius [tex]\( 3r \)[/tex], the new volume [tex]\( V_2 \)[/tex] is:
[tex]\[ V_2 = \frac{1}{3} \pi (3r)^2 h \][/tex]

5. Simplify the New Volume:
We can simplify the expression for [tex]\( V_2 \)[/tex] as follows:
[tex]\[ V_2 = \frac{1}{3} \pi (3r)^2 h = \frac{1}{3} \pi (9r^2) h = 3 \cdot 3 \cdot \left(\frac{1}{3} \pi r^2 h\right) = 9 \left(\frac{1}{3} \pi r^2 h\right) \][/tex]

6. Factor Comparison:
Now, comparing [tex]\( V_2 \)[/tex] with [tex]\( V_1 \)[/tex], we can see that:
[tex]\[ V_2 = 9V_1 \][/tex]

Hence, the volume of the cone is multiplied by 9 when the radius is tripled and the height remains the same.

Therefore, the correct answer is:
[tex]\[ \text{A. 9} \][/tex]