What is the current draw of a 1,200-W electric heater operating on a [tex]$120 \text{ VAC}$[/tex] power supply?

Select one:
A. [tex]1,200 \text{ W} \times 120 \text{ V} = 144,000 \text{ A}[/tex]
B. [tex]1,200 \text{ W} / 120 \text{ V} = 10 \text{ A}[/tex]
C. [tex]120 \text{ V} + 1,200 \text{ W} = 1,320 \text{ A}[/tex]
D. [tex]120 \text{ V} / 1,200 \text{ W} = 0.1 \text{ A}[/tex]



Answer :

To determine the current draw of a 1,200-watt electric heater operating on a 120-volt AC power supply, we will use Ohm's Law. Ohm's Law states that current (I) is equal to power (P) divided by voltage (V):

[tex]\[ I = \frac{P}{V} \][/tex]

Where:
- [tex]\( P \)[/tex] is the power in watts (W),
- [tex]\( V \)[/tex] is the voltage in volts (V),
- [tex]\( I \)[/tex] is the current in amperes (A).

Given:
- [tex]\( P = 1,200 \)[/tex] watts (W),
- [tex]\( V = 120 \)[/tex] volts (V),

We can plug these values into the formula:

[tex]\[ I = \frac{1,200 \, \text{W}}{120 \, \text{V}} = 10 \, \text{A} \][/tex]

So, the current draw of the electric heater is [tex]\( 10 \)[/tex] amperes (A).

Therefore, the correct answer is:
B. [tex]\( 1,200 \, \text{W} / 120 \, \text{V} = 10 \, \text{A} \)[/tex]