What is the solution to [tex]4+5 e^{x+2}=11[/tex]?

A. [tex]x=\ln \frac{7}{5}-2[/tex]
B. [tex]x=\ln \frac{7}{5}+2[/tex]
C. [tex]x=\ln 35-2[/tex]
D. [tex]x=\ln 35+2[/tex]



Answer :

Let's solve the equation [tex]\(4 + 5e^{x+2} = 11\)[/tex] step-by-step to determine which given choice is correct:

1. Isolate the exponential term:

Start by subtracting 4 from both sides of the equation:
[tex]\[ 4 + 5e^{x+2} - 4 = 11 - 4 \][/tex]
Simplifying this, we have:
[tex]\[ 5e^{x+2} = 7 \][/tex]

2. Solve for [tex]\(e^{x+2}\)[/tex]:

Next, we divide both sides by 5:
[tex]\[ e^{x+2} = \frac{7}{5} \][/tex]

3. Take the natural logarithm of both sides:

Apply the natural logarithm ([tex]\(\ln\)[/tex]) to both sides to eliminate the exponential:
[tex]\[ \ln(e^{x+2}) = \ln\left(\frac{7}{5}\right) \][/tex]

4. Simplify using the properties of logarithms:

Recall that [tex]\(\ln(e^y) = y\)[/tex]:
[tex]\[ x + 2 = \ln\left(\frac{7}{5}\right) \][/tex]

5. Solve for [tex]\(x\)[/tex]:

Subtract 2 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x = \ln\left(\frac{7}{5}\right) - 2 \][/tex]

We have found that the solution to the equation [tex]\(4 + 5e^{x+2} = 11\)[/tex] is:
[tex]\[ x = \ln\left(\frac{7}{5}\right) - 2 \][/tex]

Therefore, among the provided choices, the correct one is:
[tex]\[ x = \ln\left(\frac{7}{5}\right) - 2 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{\ln\left(\frac{7}{5}\right) - 2} \][/tex]