Answer :
Let's solve the equation [tex]\(4 + 5e^{x+2} = 11\)[/tex] step-by-step to determine which given choice is correct:
1. Isolate the exponential term:
Start by subtracting 4 from both sides of the equation:
[tex]\[ 4 + 5e^{x+2} - 4 = 11 - 4 \][/tex]
Simplifying this, we have:
[tex]\[ 5e^{x+2} = 7 \][/tex]
2. Solve for [tex]\(e^{x+2}\)[/tex]:
Next, we divide both sides by 5:
[tex]\[ e^{x+2} = \frac{7}{5} \][/tex]
3. Take the natural logarithm of both sides:
Apply the natural logarithm ([tex]\(\ln\)[/tex]) to both sides to eliminate the exponential:
[tex]\[ \ln(e^{x+2}) = \ln\left(\frac{7}{5}\right) \][/tex]
4. Simplify using the properties of logarithms:
Recall that [tex]\(\ln(e^y) = y\)[/tex]:
[tex]\[ x + 2 = \ln\left(\frac{7}{5}\right) \][/tex]
5. Solve for [tex]\(x\)[/tex]:
Subtract 2 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x = \ln\left(\frac{7}{5}\right) - 2 \][/tex]
We have found that the solution to the equation [tex]\(4 + 5e^{x+2} = 11\)[/tex] is:
[tex]\[ x = \ln\left(\frac{7}{5}\right) - 2 \][/tex]
Therefore, among the provided choices, the correct one is:
[tex]\[ x = \ln\left(\frac{7}{5}\right) - 2 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\ln\left(\frac{7}{5}\right) - 2} \][/tex]
1. Isolate the exponential term:
Start by subtracting 4 from both sides of the equation:
[tex]\[ 4 + 5e^{x+2} - 4 = 11 - 4 \][/tex]
Simplifying this, we have:
[tex]\[ 5e^{x+2} = 7 \][/tex]
2. Solve for [tex]\(e^{x+2}\)[/tex]:
Next, we divide both sides by 5:
[tex]\[ e^{x+2} = \frac{7}{5} \][/tex]
3. Take the natural logarithm of both sides:
Apply the natural logarithm ([tex]\(\ln\)[/tex]) to both sides to eliminate the exponential:
[tex]\[ \ln(e^{x+2}) = \ln\left(\frac{7}{5}\right) \][/tex]
4. Simplify using the properties of logarithms:
Recall that [tex]\(\ln(e^y) = y\)[/tex]:
[tex]\[ x + 2 = \ln\left(\frac{7}{5}\right) \][/tex]
5. Solve for [tex]\(x\)[/tex]:
Subtract 2 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x = \ln\left(\frac{7}{5}\right) - 2 \][/tex]
We have found that the solution to the equation [tex]\(4 + 5e^{x+2} = 11\)[/tex] is:
[tex]\[ x = \ln\left(\frac{7}{5}\right) - 2 \][/tex]
Therefore, among the provided choices, the correct one is:
[tex]\[ x = \ln\left(\frac{7}{5}\right) - 2 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\ln\left(\frac{7}{5}\right) - 2} \][/tex]