What is the value of the function when [tex] x = 3 [/tex] in the piecewise function?

[tex]\[
g(x) = \begin{cases}
3x & \text{when } x \ \textgreater \ 1 \\
-2x & \text{when } x \leq 1
\end{cases}
\][/tex]



Answer :

To find the value of the function [tex]\( g(x) \)[/tex] when [tex]\( x = 3 \)[/tex], we need to evaluate which part of the piecewise function applies based on the given value of [tex]\( x \)[/tex].

The function [tex]\( g(x) \)[/tex] is defined as follows:

[tex]\[ g(x) = \begin{cases} 3x & \text{when } x > 1 \\ -2x & \text{when } x \leq 1 \end{cases} \][/tex]

Now, let's determine which condition [tex]\( x = 3 \)[/tex] satisfies:
- [tex]\( 3 > 1 \)[/tex] is true.

Since [tex]\( x = 3 \)[/tex] satisfies [tex]\( x > 1 \)[/tex], we use the first part of the piecewise function:

[tex]\[ g(x) = 3x \][/tex]

Next, we substitute [tex]\( x = 3 \)[/tex] into the equation:

[tex]\[ g(3) = 3 \cdot 3 \][/tex]

Perform the multiplication:

[tex]\[ g(3) = 9 \][/tex]

Thus, the value of the function [tex]\( g(x) \)[/tex] when [tex]\( x = 3 \)[/tex] is [tex]\( 9 \)[/tex].