Answer :
To simplify the expression [tex]\((2-1)+3^2 \div 3\)[/tex], we need to follow the order of operations, often remembered by the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division (left to right), Addition and Subtraction (left to right)).
Here's the step-by-step process:
1. Parentheses: First, simplify the expression inside the parentheses.
[tex]\[ 2 - 1 = 1 \][/tex]
So, the expression now looks like:
[tex]\[ 1 + 3^2 \div 3 \][/tex]
2. Exponents: Next, calculate the exponent.
[tex]\[ 3^2 = 9 \][/tex]
So, the expression now becomes:
[tex]\[ 1 + 9 \div 3 \][/tex]
3. Division: Perform the division next.
[tex]\[ 9 \div 3 = 3 \][/tex]
So, the expression now is:
[tex]\[ 1 + 3 \][/tex]
4. Addition: Finally, perform the addition.
[tex]\[ 1 + 3 = 4 \][/tex]
Therefore, the simplified result is [tex]\(4\)[/tex].
So the best answer is:
- D. 4
Here's the step-by-step process:
1. Parentheses: First, simplify the expression inside the parentheses.
[tex]\[ 2 - 1 = 1 \][/tex]
So, the expression now looks like:
[tex]\[ 1 + 3^2 \div 3 \][/tex]
2. Exponents: Next, calculate the exponent.
[tex]\[ 3^2 = 9 \][/tex]
So, the expression now becomes:
[tex]\[ 1 + 9 \div 3 \][/tex]
3. Division: Perform the division next.
[tex]\[ 9 \div 3 = 3 \][/tex]
So, the expression now is:
[tex]\[ 1 + 3 \][/tex]
4. Addition: Finally, perform the addition.
[tex]\[ 1 + 3 = 4 \][/tex]
Therefore, the simplified result is [tex]\(4\)[/tex].
So the best answer is:
- D. 4