Answer :

Sure, let's simplify the given expression step-by-step.

We start with the expression:
[tex]\[ (4n^4 - 8n + 4) - (8n^2 + 4n^4 + 1) \][/tex]

First, distribute the negative sign through the second parenthesis:
[tex]\[ 4n^4 - 8n + 4 - 8n^2 - 4n^4 - 1 \][/tex]

Next, combine like terms. Like terms are the terms that have the same power of [tex]\( n \)[/tex].

Combine the [tex]\( n^4 \)[/tex] terms:
[tex]\[ 4n^4 - 4n^4 = 0 \][/tex]

Next, isolate the [tex]\( n^2 \)[/tex] term:
[tex]\[ - 8n^2 \][/tex]

Combine the [tex]\( n \)[/tex] term:
[tex]\[ - 8n \][/tex]

Finally, combine the constant terms:
[tex]\[ 4 - 1 = 3 \][/tex]

Putting it all together, we get the simplified expression:
[tex]\[ -8n^2 - 8n + 3 \][/tex]

So, the simplified form of the expression
[tex]\[ \left(4 n^4-8 n+4\right)-\left(8 n^2+4 n^4+1\right) \][/tex]
is:
[tex]\[ -8n^2 - 8n + 3 \][/tex]