To solve the expression [tex]\(10c - cd + d^3\)[/tex] with [tex]\(c = -6\)[/tex] and [tex]\(d = 2\)[/tex], let's break it down into smaller, more manageable parts:
1. Calculate [tex]\(10c\)[/tex]:
[tex]\[
10c = 10 \times (-6) = -60
\][/tex]
2. Calculate [tex]\(cd\)[/tex]:
[tex]\[
cd = (-6) \times 2 = -12
\][/tex]
3. Calculate [tex]\(d^3\)[/tex]:
[tex]\[
d^3 = 2^3 = 2 \times 2 \times 2 = 8
\][/tex]
Now we need to combine all these parts together according to the expression [tex]\(10c - cd + d^3\)[/tex]:
4. Combine the results:
[tex]\[
10c - cd + d^3 = -60 - (-12) + 8
\][/tex]
Simplify the expression:
[tex]\[
-60 + 12 + 8 = -40
\][/tex]
So, the final answer for the expression [tex]\(10c - cd + d^3\)[/tex] when [tex]\(c = -6\)[/tex] and [tex]\(d = 2\)[/tex] is [tex]\(-40\)[/tex].