Sure, let's tackle the process of converting [tex]\(12.5\%\)[/tex] to a fraction step by step.
1. Understanding the Percentage:
The given value is [tex]\(12.5\%\)[/tex]. Recall that percentage means per hundred. So, [tex]\(12.5\%\)[/tex] can be rewritten as:
[tex]\[
12.5\% = \frac{12.5}{100}
\][/tex]
2. Converting the Percentage to a Decimal:
To convert [tex]\(12.5\%\)[/tex] to a decimal, we divide by 100:
[tex]\[
12.5\% = \frac{12.5}{100} = 0.125
\][/tex]
3. Converting the Decimal to a Fraction:
Now, we need to convert the decimal [tex]\(0.125\)[/tex] to a fraction. We know that:
[tex]\[
0.125 = \frac{125}{1000}
\][/tex]
To simplify this fraction, we find the greatest common divisor (GCD) of 125 and 1000, which is 125.
Dividing both the numerator and the denominator by 125, we get:
[tex]\[
\frac{125 \div 125}{1000 \div 125} = \frac{1}{8}
\][/tex]
4. Final Answer:
Thus, [tex]\(0.125\)[/tex] in fraction form simplifies to [tex]\(\frac{1}{8}\)[/tex].
So, converting [tex]\(12.5\%\)[/tex] to a fraction, we have:
[tex]\[
12.5\% = 0.125 = \frac{1}{8}
\][/tex]
Therefore, [tex]\(12.5\%\)[/tex] as a fraction is [tex]\(\frac{1}{8}\)[/tex].