Answer :
Certainly! Let's simplify the given expression step-by-step using the order of operations (PEMDAS/BODMAS: Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)).
Given expression:
[tex]\[ \left(4 + 2^3\right) \times 6 - 10 \][/tex]
Step 1: Exponentiation
First, we need to evaluate the exponent [tex]\(2^3\)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
Updating our expression, we get:
[tex]\[ \left(4 + 8\right) \times 6 - 10 \][/tex]
Step 2: Parentheses
Next, we calculate the sum inside the parentheses:
[tex]\[ 4 + 8 = 12 \][/tex]
Updating our expression, we get:
[tex]\[ 12 \times 6 - 10 \][/tex]
Step 3: Multiplication
Now, we perform the multiplication:
[tex]\[ 12 \times 6 = 72 \][/tex]
Updating our expression, we get:
[tex]\[ 72 - 10 \][/tex]
Step 4: Subtraction
Finally, we perform the subtraction:
[tex]\[ 72 - 10 = 62 \][/tex]
So, the simplified expression is:
[tex]\[ 62 \][/tex]
Given expression:
[tex]\[ \left(4 + 2^3\right) \times 6 - 10 \][/tex]
Step 1: Exponentiation
First, we need to evaluate the exponent [tex]\(2^3\)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
Updating our expression, we get:
[tex]\[ \left(4 + 8\right) \times 6 - 10 \][/tex]
Step 2: Parentheses
Next, we calculate the sum inside the parentheses:
[tex]\[ 4 + 8 = 12 \][/tex]
Updating our expression, we get:
[tex]\[ 12 \times 6 - 10 \][/tex]
Step 3: Multiplication
Now, we perform the multiplication:
[tex]\[ 12 \times 6 = 72 \][/tex]
Updating our expression, we get:
[tex]\[ 72 - 10 \][/tex]
Step 4: Subtraction
Finally, we perform the subtraction:
[tex]\[ 72 - 10 = 62 \][/tex]
So, the simplified expression is:
[tex]\[ 62 \][/tex]