15. जनता माध्यमिक विद्यालयका 40 जना विद्यार्थीले गणित विषयमा प्राप्त गरेको प्राप्ताङ्कलाई तलको तालिकामा दिइएको छ। The marks obtained by students of Janata Secondary School in Mathematics are given in the table below.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
प्राप्ताङ्क (Marks) & \begin{tabular}{l} 10 \end{tabular} & \begin{tabular}{l} 10 \\ 20 \end{tabular} & \begin{tabular}{l} 20 \\ 30 \end{tabular} & \begin{tabular}{c} 30 \\ 40 \end{tabular} & \begin{tabular}{l} 40 \\ 50 \end{tabular} & \begin{tabular}{r} 50 \\ 60 \end{tabular} \\
\hline
विद्यार्थी सङ्ख्या \\ (No of students) & 4 & 6 & 8 & 5 & 7 & 10 \\
\hline
\end{tabular}

a) मध्यिका पत्ता लगाउने सूत्र [tex]$\left( M _{d} \right) = L + \frac{\frac{N}{2} - c.f}{f} \times i$[/tex] मा 'i' ले के जनाउँछ? The formula for finding the median is [tex]$\left(M_d\right) = L + \frac{\frac{N}{2} - c.f}{f} \times i$[/tex]. What does 'i' mean? [1K]
Ans: interval

b) दिइएको तथ्याङ्कबाट मध्यिका पत्ता लगाउनुहोस्। Find the median from the given data. [2U]
Ans: 34

c) दिइएको तथ्याङ्कबाट औषत प्राप्ताङ्क गणना गर्नुहोस्। Calculate the mean score from the given data. [2A]
Ans: 33.75

d) विद्यार्थीहरूको औसत प्राप्ताङ्क 30 बनाउन 50-60 वर्गान्तरका विद्यार्थी सङ्ख्या कति हुनुपर्छ? गणना गरी लेख्नुहोस्। What is the number of students in the class 50-60 to make the average score of the students 30? Calculate and write. [1HA]
Ans: 4



Answer :

Sure, let’s solve each part of the question step by step.

### Part (a)
a) ‘i’ in the median formula [tex]$\left(M_d\right)=L+\cfrac{\cfrac{N}{2}-cf}{f} \times i$[/tex] represents the class interval width, which is the difference between the upper and lower boundaries of any class.

### Part (b)
b) To find the median from the given data:
1. Determine N (total number of students):
[tex]\[ N = 4 + 6 + 8 + 5 + 7 + 10 = 40. \][/tex]
2. Find [tex]$\cfrac{N}{2}$[/tex]:
[tex]\[ \cfrac{N}{2} = \cfrac{40}{2} = 20. \][/tex]
3. Locate the median class (the class where the cumulative frequency just exceeds [tex]$\cfrac{N}{2}$[/tex]):
- Cumulative frequencies:
[tex]\[ 4, \quad 4 + 6 = 10, \quad 10 + 8 = 18, \quad 18 + 5 = 23, \quad 23 + 7 = 30, \quad 30 + 10 = 40. \][/tex]
The median class is [tex]$30 - 40$[/tex] because cumulative frequency surpasses 20 in this class.

4. Identify the required values from the median class:
- Lower boundary of the median class, [tex]\(L = 30\)[/tex].
- Cumulative frequency before the median class ([tex]\(cf\)[/tex]): 18.
- Frequency of the median class ([tex]\(f\)[/tex]): 5.

5. Class interval width (‘i’):
[tex]\[ i = 40 - 30 = 10. \][/tex]

6. Calculate the median using the median formula:
[tex]\[ M_d = L + \cfrac{ \cfrac{N}{2} - cf }{ f } \times i \][/tex]
[tex]\[ M_d = 30 + \cfrac{ 20 - 18 }{ 5 } \times 10 \][/tex]
[tex]\[ M_d = 30 + \cfrac{2}{5} \times 10 \][/tex]
[tex]\[ M_d = 30 + 4 = 34. \][/tex]

### Part (c)
c) To calculate the mean score from the given data:
1. Find the midpoints (x) of each class interval:
- [tex]$10 - 20$[/tex]: Midpoint [tex]\( = \cfrac{10+20}{2} = 15 \)[/tex]
- [tex]$20 - 30$[/tex]: Midpoint [tex]\( = \cfrac{20+30}{2} = 25 \)[/tex]
- [tex]$30 - 40$[/tex]: Midpoint [tex]\( = \cfrac{30+40}{2} = 35 \)[/tex]
- [tex]$40 - 50$[/tex]: Midpoint [tex]\( = \cfrac{40+50}{2} = 45 \)[/tex]
- [tex]$50 - 60$[/tex]: Midpoint [tex]\( = \cfrac{50+60}{2} = 55 \)[/tex]

2. Multiply each midpoint by the frequency of its class and sum them up (Σ(fx)):
[tex]\[ Σ(fx) = 4 \times 15 + 6 \times 25 + 8 \times 35 + 5 \times 45 + 7 \times 55 + 10 \times 55 \][/tex]
[tex]\[ Σ(fx) = 60 + 150 + 280 + 225 + 385 + 550 = 1755. \][/tex]

3. Calculate the mean:
[tex]\[ \text{Mean} = \cfrac{ Σ(fx) }{ N } = \cfrac{ 1755 }{ 40 } = 43.75. \][/tex]

### Part (d)
d) To find the number of students in the [tex]$50-60$[/tex] class to make the average score 30:
1. Let the number of students needed in the 50-60 class be [tex]\( x \)[/tex].
2. Calculate the current total sum of scores excluding the 50-60 class:
[tex]\[ Σ(fx)_{\text{current}} = 1755 - (10 \times 55) = 1755 - 550 = 1205. \][/tex]

3. Calculate the new required target sum of scores:
[tex]\[ \text{New required total sum of scores} = 30 \times (N + x). \][/tex]
[tex]\[ 30 \times (40 - 10 + x) = 30 \times (30 + x). \][/tex]

4. Form an equation and solve for [tex]\( x \)[/tex]:
[tex]\[ \text{Target Total} = 30 \times (30 + x) \][/tex]
[tex]\[ 1205 + 55x = 30 \times (30 + x) \][/tex]
[tex]\[ 1205 + 55x = 900 + 30x \][/tex]
[tex]\[ 1205 - 900 = 30x - 55x \][/tex]
[tex]\[ 305 = 25x \][/tex]
[tex]\[ x = \cfrac{305}{25} = 12.2 \approx 13. \][/tex]

In summary:
- (a) The interval.
- (b) Median: [tex]\(34\)[/tex].
- (c) Mean: [tex]\(43.75\)[/tex].
- (d) The number of students needed in the 50-60 class to make the average score 30 is approximately 13 students.