Select the best answer for the question.

Solve this inequality: [tex]\frac{j}{4} - 8 \ \textless \ 4[/tex]

A. [tex]j \ \textgreater \ -12[/tex]

B. [tex]j \ \textless \ 12[/tex]

C. [tex]j \ \textless \ -48[/tex]

D. [tex]j \ \textless \ 48[/tex]



Answer :

To solve the inequality [tex]\( \frac{j}{4} - 8 < 4 \)[/tex], follow these steps:

1. Isolate the term with [tex]\( j \)[/tex]:

Add 8 to both sides of the inequality:
[tex]\[ \frac{j}{4} - 8 + 8 < 4 + 8 \][/tex]
Simplifying the left and right sides, we get:
[tex]\[ \frac{j}{4} < 12 \][/tex]

2. Solve for [tex]\( j \)[/tex]:

Multiply both sides of the inequality by 4 to eliminate the denominator (since multiplying or dividing by a positive number doesn't change the direction of the inequality):
[tex]\[ \left( \frac{j}{4} \right) \times 4 < 12 \times 4 \][/tex]
Simplifying this, we obtain:
[tex]\[ j < 48 \][/tex]

Therefore, the best answer is:

D. [tex]\( j < 48 \)[/tex]