Certainly! Let's begin by analyzing the given formula and solving for [tex]\( M \)[/tex].
The given formula is:
[tex]\[ K = L \cdot M \cdot N \][/tex]
We need to isolate [tex]\( M \)[/tex]. To do this, we'll divide both sides of the equation by [tex]\( L \cdot N \)[/tex]:
[tex]\[ \frac{K}{L \cdot N} = \frac{L \cdot M \cdot N}{L \cdot N} \][/tex]
On the right-hand side of the equation, [tex]\( L \)[/tex] and [tex]\( N \)[/tex] cancel out because anything divided by itself is 1, leaving us with:
[tex]\[ \frac{K}{L \cdot N} = M \][/tex]
Thus, the formula for [tex]\( M \)[/tex] is:
[tex]\[ M = \frac{K}{L \cdot N} \][/tex]
Given the choices:
- A. [tex]\( M = \frac{K}{L \cdot N} \)[/tex]
- B. [tex]\( M = L \cdot N \cdot K \)[/tex]
- C. [tex]\( M = \frac{K \cdot L}{N} \)[/tex]
- D. [tex]\( M = \frac{L \cdot N}{K} \)[/tex]
The correct choice is:
A. [tex]\( M = \frac{K}{L \cdot N} \)[/tex]
Therefore, the best answer for the question is:
[tex]\[ \boxed{A} \][/tex]