Answer :

To solve the given problem, we need to find [tex]\( f(g(5)) \)[/tex] where [tex]\( f(x) = x^2 - 4x \)[/tex] and [tex]\( g(x) = 2x - 3 \)[/tex]. Let's break this down step by step.

1. Calculate [tex]\( g(5) \)[/tex]:

We start by finding the value of [tex]\( g(5) \)[/tex]. Plug [tex]\( x = 5 \)[/tex] into the function [tex]\( g(x) \)[/tex]:
[tex]\[ g(5) = 2(5) - 3 \][/tex]

Simplify the expression:
[tex]\[ g(5) = 10 - 3 = 7 \][/tex]

So, [tex]\( g(5) = 7 \)[/tex].

2. Calculate [tex]\( f(g(5)) \)[/tex]:

Now that we have [tex]\( g(5) = 7 \)[/tex], we need to find [tex]\( f(7) \)[/tex] by substituting [tex]\( x = 7 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(7) = 7^2 - 4(7) \][/tex]

Simplify the expression:
[tex]\[ f(7) = 49 - 28 = 21 \][/tex]

So, [tex]\( f(7) = 21 \)[/tex].

3. Conclusion:

Therefore, the value of [tex]\( f(g(5)) \)[/tex] is [tex]\( 21 \)[/tex].

Thus, the final answer is:
[tex]\[ f(g(5)) = 21 \][/tex]