2. A got an estimate for repairs on his bike. The parts will cost [tex]\$17.50[/tex], and the parts and labor together will not be more than [tex]\$40[/tex]. Which inequality shows the possible labor costs, L?

A. [tex]40 + 17.50 \geq L[/tex]
B. [tex]40 + L \geq 17.50[/tex]
C. [tex]17.50 + L \leq 40[/tex]
D. [tex]L - 17.50 \leq 40[/tex]



Answer :

To solve this problem, we need to determine the possible labor costs for repairing the bike, given that the total cost (parts and labor) will not exceed \[tex]$40. The parts themselves cost \$[/tex]17.50.

Let's denote the labor cost by [tex]\( L \)[/tex].

Given:
- Cost of parts = \[tex]$17.50 - Total maximum cost for parts and labor = \$[/tex]40

The parts and labor together should not be more than \$40, which gives us the following inequality:

[tex]\[ \text{Cost of parts} + \text{Labor cost} \leq \text{Total maximum cost} \][/tex]
[tex]\[ 17.50 + L \leq 40 \][/tex]

Therefore, the inequality showing the possible labor costs, [tex]\( L \)[/tex], is:
[tex]\[ 17.50 + L \leq 40 \][/tex]

Now, let's match this with the options provided:
A. [tex]\( 40 + 17.50 \geq L \)[/tex]
B. [tex]\( 40 + L \geq 17.50 \)[/tex]
C. [tex]\( 17.50 + L \leq 40 \)[/tex]
D. [tex]\( L - 17.50 \leq 40 \)[/tex]

The correct inequality, [tex]\( 17.50 + L \leq 40 \)[/tex], is option C.