Identify the 31st term of an arithmetic sequence where [tex]a_1 = 26[/tex] and [tex]a_{22} = -226[/tex].

A. [tex]-334[/tex]
B. [tex]-274[/tex]
C. [tex]-284[/tex]
D. [tex]-346[/tex]



Answer :

To identify the 31st term of an arithmetic sequence where the first term is [tex]\( a_1 = 26 \)[/tex] and the 22nd term is [tex]\( a_{22} = -226 \)[/tex], we can follow these steps:

1. Determine the Common Difference ([tex]\( d \)[/tex]):
The general formula for the [tex]\( n \)[/tex]-th term of an arithmetic sequence is:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
For the 22nd term ([tex]\( n = 22 \)[/tex]):
[tex]\[ a_{22} = a_1 + (22 - 1) \cdot d \][/tex]
Plugging in the given values:
[tex]\[ -226 = 26 + 21 \cdot d \][/tex]
Solving for [tex]\( d \)[/tex]:
[tex]\[ -226 - 26 = 21 \cdot d \][/tex]
[tex]\[ -252 = 21 \cdot d \][/tex]
[tex]\[ d = \frac{-252}{21} \][/tex]
[tex]\[ d = -12 \][/tex]

2. Find the 31st Term ([tex]\( a_{31} \)[/tex]):
Using the same formula for the [tex]\( n \)[/tex]-th term:
[tex]\[ a_{31} = a_1 + (31 - 1) \cdot d \][/tex]
Plugging in the values we have:
[tex]\[ a_{31} = 26 + 30 \cdot (-12) \][/tex]
Calculate the product:
[tex]\[ 30 \cdot (-12) = -360 \][/tex]
Add this to the first term:
[tex]\[ a_{31} = 26 + (-360) \][/tex]
[tex]\[ a_{31} = 26 - 360 \][/tex]
[tex]\[ a_{31} = -334 \][/tex]

Thus, the 31st term of the arithmetic sequence is [tex]\( \boxed{-334} \)[/tex].