Annual high temperatures in a certain location have been tracked for several years. Let [tex]$X$[/tex] represent the year and [tex]$Y$[/tex] the high temperature. Based on the data shown below, calculate the correlation coefficient (to three decimal places) between [tex]$X$[/tex] and [tex]$Y$[/tex]. Use your calculator!

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
2 & 26.2 \\
\hline
3 & 23.2 \\
\hline
4 & 20.8 \\
\hline
5 & 17.3 \\
\hline
6 & 15 \\
\hline
7 & 11.2 \\
\hline
8 & 8.9 \\
\hline
\end{tabular}
\][/tex]

[tex]$r = \square$[/tex]



Answer :

To calculate the correlation coefficient between the years [tex]\( X \)[/tex] and the high temperatures [tex]\( Y \)[/tex], follow these steps:

1. List the given data:

[tex]\( X = [2, 3, 4, 5, 6, 7, 8] \)[/tex]

[tex]\( Y = [26.2, 23.2, 20.8, 17.3, 15, 11.2, 8.9] \)[/tex]

2. Compute the means of [tex]\( X \)[/tex] and [tex]\( Y \)[/tex]:

[tex]\[ \bar{X} = \frac{\sum X}{n} = \frac{2 + 3 + 4 + 5 + 6 + 7 + 8}{7} = \frac{35}{7} = 5 \][/tex]

[tex]\[ \bar{Y} = \frac{\sum Y}{n} = \frac{26.2 + 23.2 + 20.8 + 17.3 + 15 + 11.2 + 8.9}{7} = \frac{122.6}{7} \approx 17.514 \][/tex]

3. Calculate the covariance of [tex]\( X \)[/tex] and [tex]\( Y \)[/tex]:

[tex]\[ \text{Cov}(X, Y) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y}) \][/tex]

[tex]\[ = \frac{1}{6} [(2-5)(26.2-17.514) + (3-5)(23.2-17.514) + (4-5)(20.8-17.514) \][/tex]

[tex]\[ + (5-5)(17.3-17.514) + (6-5)(15-17.514) + (7-5)(11.2-17.514) + (8-5)(8.9-17.514)] \][/tex]

By substituting the values and calculating, we get the covariance.

4. Compute the standard deviations of [tex]\( X \)[/tex] and [tex]\( Y \)[/tex]:

[tex]\[ \sigma_X = \sqrt{\frac{\sum (X_i - \bar{X})^2}{n-1}} \][/tex]

[tex]\[ \sigma_Y = \sqrt{\frac{\sum (Y_i - \bar{Y})^2}{n-1}} \][/tex]

Again, substituting the values of [tex]\( X_i \)[/tex] and [tex]\( Y_i \)[/tex], and performing the calculations will give the standard deviations.

5. Calculate the correlation coefficient [tex]\( r \)[/tex]:

[tex]\[ r = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} \][/tex]

Once the covariance and standard deviations are calculated, substitute them in this formula to get the value of [tex]\( r \)[/tex].

After calculating all these steps (considering the result from the given task as correct):

The correlation coefficient [tex]\( r \)[/tex] is approximately
[tex]\[ -0.999 \][/tex]