Type the correct answer in each box. Use numerals instead of words.

If [tex] x \ \textgreater \ 0 [/tex], what values of [tex] c [/tex] and [tex] d [/tex] make the equations true?

\begin{tabular}{|l|l|}
\hline
Equation A & [tex] \sqrt{448 x^c} = 8 x^3 \sqrt{7 x} [/tex] \\
\hline
Equation B & [tex] \sqrt[3]{576 x^d} = 4 x \sqrt[3]{9 x^2} [/tex] \\
\hline
\end{tabular}

In equation A, [tex] c [/tex] is [tex] \square [/tex]

In equation B, [tex] d [/tex] is [tex] \square [/tex]



Answer :

To solve the given equations for [tex]\( c \)[/tex] and [tex]\( d \)[/tex], let's analyze each equation step by step.

Equation A:
[tex]\[ \sqrt{448 x^c} = 8 x^3 \sqrt{7 x} \][/tex]

First, simplify the left and right sides to have comparable forms:
[tex]\[ \sqrt{448 x^c} = \sqrt{448} \cdot \sqrt{x^c} \][/tex]
[tex]\[ 8 x^3 \sqrt{7 x} = 8 x^3 \cdot \sqrt{7} \cdot \sqrt{x} = 8 \sqrt{7} x^3 \sqrt{x} \][/tex]

Rewrite [tex]\(\sqrt{x^c}\)[/tex] as [tex]\(x^{c/2}\)[/tex] and [tex]\(\sqrt{x}\)[/tex] as [tex]\(x^{1/2}\)[/tex]:
[tex]\[ \sqrt{448} \cdot x^{c/2} = 8 \sqrt{7} x^3 x^{1/2} \][/tex]
[tex]\[ \sqrt{448} \cdot x^{c/2} = 8 \sqrt{7} x^{3 + 1/2} = 8 \sqrt{7} x^{7/2} \][/tex]

Equate the exponents and the constants:
[tex]\[ \sqrt{448} = 8 \sqrt{7} \][/tex]
This equality holds because [tex]\(\sqrt{448} = \sqrt{64 \cdot 7} = 8 \sqrt{7}\)[/tex].

Now, equate the exponents:
[tex]\[ \frac{c}{2} = \frac{7}{2} \][/tex]
Multiply both sides by 2:
[tex]\[ c = 7 \][/tex]

Equation B:
[tex]\[ \sqrt[3]{576 x^d} = 4 x \sqrt[3]{9 x^2} \][/tex]

Simplify the left and right sides to have comparable forms:
[tex]\[ \sqrt[3]{576 x^d} = \sqrt[3]{576} \cdot \sqrt[3]{x^d} \][/tex]
[tex]\[ 4 x \sqrt[3]{9 x^2} = 4 x \cdot \sqrt[3]{9} \cdot \sqrt[3]{x^2} \][/tex]

Rewrite [tex]\(\sqrt[3]{x^d}\)[/tex] as [tex]\(x^{d/3}\)[/tex] and [tex]\(\sqrt[3]{x^2}\)[/tex] as [tex]\(x^{2/3}\)[/tex]:
[tex]\[ \sqrt[3]{576} \cdot x^{d/3} = 4 \cdot \sqrt[3]{9} \cdot x \cdot x^{2/3} = 4 \sqrt[3]{9} x^{1 + 2/3} = 4 \sqrt[3]{9} x^{5/3} \][/tex]

Equate the exponents and the constants:
[tex]\[ \sqrt[3]{576} = 4 \sqrt[3]{9} \][/tex]
This equality holds because [tex]\(\sqrt[3]{576} = \sqrt[3]{8^2 \cdot 9} = 8 \sqrt[3]{9}\)[/tex].

Now, equate the exponents:
[tex]\[ \frac{d}{3} = \frac{5}{3} \][/tex]
Multiply both sides by 3:
[tex]\[ d = 7 \][/tex]

Therefore, the values of [tex]\( c \)[/tex] and [tex]\( d \)[/tex] are:
In equation [tex]\(A\)[/tex], [tex]\(c\)[/tex] is [tex]\(7\)[/tex]. In equation [tex]\(B\)[/tex], [tex]\(d\)[/tex] is [tex]\(7\)[/tex].