Answer :

To find the inverse function of [tex]\( f(x) = 3 + \sqrt[3]{x} \)[/tex], follow these steps:

1. Start by expressing [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = 3 + \sqrt[3]{x} \][/tex]

2. Isolate [tex]\( \sqrt[3]{x} \)[/tex] on one side:
[tex]\[ y - 3 = \sqrt[3]{x} \][/tex]

3. Cube both sides to eliminate the cube root:
[tex]\[ (y - 3)^3 = x \][/tex]

4. Express [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ x = (y - 3)^3 \][/tex]

5. Interpret this expression as the inverse function [tex]\( f^{-1}(y) \)[/tex]:
[tex]\[ f^{-1}(y) = (y - 3)^3 \][/tex]

6. Substitute [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to match the standard notation for functions:
[tex]\[ f^{-1}(x) = (x - 3)^3 \][/tex]

Therefore, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = (0.333333333333333x - 1)^3 \][/tex]