Select the correct answer.

Antonio drops a glass marble into a pond and creates ripples that form concentric circles on the surface of the water. The radius of the circle, [tex]r[/tex], in centimeters is given by the function [tex]r(t) = 1 + 4t[/tex], where [tex]t[/tex] is the time in seconds that the ripples move outward from the center of the circle. Find the function [tex]A(t)[/tex] that represents the area, [tex]A[/tex], of the expanding circle in [tex]t[/tex] seconds.

A. [tex]A(t) = \pi\left(16t^2 + 8t + 1\right)[/tex]



Answer :

To solve the problem of finding the function [tex]\( A(t) \)[/tex] that represents the area of the expanding circle in [tex]\( t \)[/tex] seconds, we start with the given radius function:

[tex]\[ r(t) = 1 + 4t \][/tex]

The area [tex]\( A \)[/tex] of a circle is given by the formula:

[tex]\[ A = \pi r^2 \][/tex]

To find [tex]\( A(t) \)[/tex], we need to express the area in terms of [tex]\( t \)[/tex]. Substituting the radius function [tex]\( r(t) \)[/tex] into the area formula, we get:

[tex]\[ A(t) = \pi \left( r(t) \right)^2 \][/tex]

Next, we substitute [tex]\( r(t) \)[/tex] with [tex]\( 1 + 4t \)[/tex]:

[tex]\[ A(t) = \pi \left( 1 + 4t \right)^2 \][/tex]

To find the explicit form of [tex]\( A(t) \)[/tex], we need to expand the squared term:

[tex]\[ \left( 1 + 4t \right)^2 = (1 + 4t)(1 + 4t) \][/tex]

Using the distributive property (FOIL method):

[tex]\[ (1 + 4t)(1 + 4t) = 1 \cdot 1 + 1 \cdot 4t + 4t \cdot 1 + 4t \cdot 4t \][/tex]
[tex]\[ = 1 + 4t + 4t + 16t^2 \][/tex]
[tex]\[ = 1 + 8t + 16t^2 \][/tex]

So, we have:

[tex]\[ (1 + 4t)^2 = 1 + 8t + 16t^2 \][/tex]

Therefore, the area function [tex]\( A(t) \)[/tex] becomes:

[tex]\[ A(t) = \pi (1 + 8t + 16t^2) \][/tex]

Simplifying further, we get:

[tex]\[ A(t) = \pi \left( 16t^2 + 8t + 1 \right) \][/tex]

Thus, the function [tex]\( A(t) \)[/tex] that represents the area of the expanding circle in [tex]\( t \)[/tex] seconds is:

[tex]\[ \boxed{A(t) = \pi \left( 16t^2 + 8t + 1 \right)} \][/tex]

So, the correct answer is:

A. [tex]\(\quad A(t)=\pi\left(16 t^2+8 t+1\right)\)[/tex]