A chemist adds 160.0 mL of a [tex]2.6 \, \text{mol/L}[/tex] nickel(II) chloride [tex]\left( \text{NiCl}_2 \right)[/tex] solution to a reaction.

Calculate the moles of [tex]\text{NiCl}_2[/tex] added to the flask. Round your answer to 2 significant digits.



Answer :

Sure! Let's go through the steps to find out how many moles of nickel(II) chloride [tex]$(NiCl_2)$[/tex] are added to the reaction flask:

1. Convert the volume of the solution from milliliters to liters:

The volume of the solution is given as [tex]\( 160.0 \)[/tex] milliliters (mL). To convert this to liters (L), we use the conversion factor:

[tex]\[ 1 \text{ liter} = 1000 \text{ milliliters} \][/tex]

Thus,

[tex]\[ \text{Volume in liters} = \frac{160.0 \text{ mL}}{1000} = 0.16 \text{ L} \][/tex]

2. Calculate the number of moles of nickel(II) chloride [tex]$(NiCl_2)$[/tex]:

The concentration of the solution is given as [tex]\( 2.6 \)[/tex] mol/L. We can use the formula:

[tex]\[ \text{Number of moles} = \text{Concentration} \times \text{Volume} \][/tex]

Substituting the given values:

[tex]\[ \text{Number of moles of } NiCl_2 = 2.6 \text{ mol/L} \times 0.16 \text{ L} = 0.416 \text{ mol} \][/tex]

3. Round the result to 2 significant digits:

The number of moles of nickel(II) chloride calculated is [tex]\( 0.416 \)[/tex]. When rounding this to 2 significant digits:

[tex]\[ 0.416 \approx 0.42 \text{ mol} \][/tex]

To summarize, the chemist added:

- Volume in liters: [tex]\( 0.16 \)[/tex] L
- Number of moles of [tex]\( NiCl_2 \)[/tex]: [tex]\( 0.416 \)[/tex] mol
- Rounded number of moles of [tex]\( NiCl_2 \)[/tex]: [tex]\( 0.42 \)[/tex] mol

So, the chemist added approximately [tex]\( 0.42 \)[/tex] moles of nickel(II) chloride to the reaction flask.