If [tex]$f(x) = 2x^2 + 1$[/tex] and [tex]$g(x) = x^2 - 7$[/tex], find [tex][tex]$(f - g)(x)$[/tex][/tex].

A. [tex]$x^2 + 8$[/tex]

B. [tex]$x^2 - 6$[/tex]

C. [tex][tex]$3x^2 - 6$[/tex][/tex]

D. [tex]$3x^2 + 8$[/tex]



Answer :

To find [tex]\((f - g)(x)\)[/tex] where [tex]\(f(x) = 2x^2 + 1\)[/tex] and [tex]\(g(x) = x^2 - 7\)[/tex], we need to subtract [tex]\(g(x)\)[/tex] from [tex]\(f(x)\)[/tex].

Step-by-Step solution:

1. Write the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ f(x) = 2x^2 + 1 \][/tex]
[tex]\[ g(x) = x^2 - 7 \][/tex]

2. Form the expression for [tex]\((f - g)(x)\)[/tex]:
[tex]\[ (f - g)(x) = f(x) - g(x) \][/tex]

3. Substitute the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] into the equation:
[tex]\[ (f - g)(x) = (2x^2 + 1) - (x^2 - 7) \][/tex]

4. Distribute the negative sign through the second expression:
[tex]\[ (f - g)(x) = 2x^2 + 1 - x^2 + 7 \][/tex]

5. Combine like terms:
[tex]\[ (f - g)(x) = (2x^2 - x^2) + (1 + 7) \][/tex]
[tex]\[ (f - g)(x) = x^2 + 8 \][/tex]

After simplifying, we find that [tex]\((f - g)(x)\)[/tex] is:
[tex]\[ (f - g)(x) = 3x^2 + 8 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{3x^2 + 8} \][/tex]

Thus, the choice is:
[tex]\[ \text{D. } 3x^2 + 8 \][/tex]