The revenue from selling [tex]$x$[/tex] shirts is [tex]$r(x) = 15x$[/tex].

The cost of buying [tex][tex]$x$[/tex][/tex] shirts is [tex]$c(x) = 7x + 20$[/tex].

The profit from selling [tex]$x$[/tex] shirts is [tex]$p(x) = r(x) - c(x)$[/tex].

What is [tex][tex]$p(x)$[/tex][/tex]?

A. [tex]$p(x) = 8x + 20$[/tex]
B. [tex]$p(x) = 22x - 20$[/tex]
C. [tex][tex]$p(x) = 8x - 20$[/tex][/tex]
D. [tex]$p(x) = 22x + 20$[/tex]



Answer :

Let's find the profit function [tex]\( p(x) \)[/tex] step-by-step, starting from the given revenue and cost functions.

1. Revenue function:
[tex]\[ r(x) = 15x \][/tex]
This function denotes the revenue obtained from selling [tex]\( x \)[/tex] shirts, where each shirt sells for [tex]$15. 2. Cost function: \[ c(x) = 7x + 20 \] This function represents the total cost of buying \( x \) shirts, with each shirt costing $[/tex]7 and an additional fixed cost of $20.

3. Profit function:

The profit function [tex]\( p(x) \)[/tex] is the revenue function [tex]\( r(x) \)[/tex] minus the cost function [tex]\( c(x) \)[/tex]. Mathematically, this can be expressed as:
[tex]\[ p(x) = r(x) - c(x) \][/tex]

Substitute the expressions for [tex]\( r(x) \)[/tex] and [tex]\( c(x) \)[/tex]:
[tex]\[ p(x) = 15x - (7x + 20) \][/tex]

4. Simplifying the expression:

Distribute the negative sign across the terms inside the parentheses:
[tex]\[ p(x) = 15x - 7x - 20 \][/tex]

Combine like terms:
[tex]\[ p(x) = (15x - 7x) - 20 \][/tex]
[tex]\[ p(x) = 8x - 20 \][/tex]

Thus, the profit function [tex]\( p(x) \)[/tex] is:
[tex]\[ p(x) = 8x - 20 \][/tex]

The correct answer is:
C. [tex]\( p(x) = 8x - 20 \)[/tex]