Answer :

Sure, let's solve the equation [tex]\(16^x = \frac{1}{\sqrt{x}}\)[/tex] step-by-step.

1. Rewrite the equation in terms of exponents and simpler forms:
[tex]\[ 16^x = \frac{1}{\sqrt{x}} \][/tex]

We know that [tex]\(16 = 2^4\)[/tex], so we can replace 16 with [tex]\(2^4\)[/tex]:
[tex]\[ (2^4)^x = x^{-\frac{1}{2}} \][/tex]

Simplifying the left-hand side:
[tex]\[ 2^{4x} = x^{-\frac{1}{2}} \][/tex]

2. Apply the natural logarithm to both sides to simplify:
[tex]\[ \ln(2^{4x}) = \ln(x^{-\frac{1}{2}}) \][/tex]

Using the properties of logarithms:
[tex]\[ 4x \ln(2) = -\frac{1}{2} \ln(x) \][/tex]

3. Isolate the logarithm involving [tex]\(x\)[/tex]:
[tex]\[ 4x \ln(2) = -\frac{1}{2} \ln(x) \][/tex]

Multiply both sides by -2 to simplify:
[tex]\[ -8x \ln(2) = \ln(x) \][/tex]

4. Rewrite the equation in exponential form:
[tex]\[ e^{\ln(x)} = e^{-8x \ln(2)} \][/tex]

Since [tex]\(e^{\ln(x)} = x\)[/tex], we have:
[tex]\[ x = e^{-8x \ln(2)} \][/tex]

5. Solve for [tex]\(x\)[/tex] numerically:

Solving this transcendental equation exactly requires numerical methods or special functions that can be complex. However, through numerical analysis, the valid solution for [tex]\(x\)[/tex] is:

[tex]\[ x = 0.25 \][/tex]

So, the solution to the equation [tex]\(16^x = \frac{1}{\sqrt{x}}\)[/tex] is:

[tex]\[ x = 0.25 \][/tex]