Answer :
To find three distinct solutions to the given system of equations:
[tex]\[ \begin{array}{l} x+4 y-7 z=6 \\ x+y+2 z=-8 \end{array} \][/tex]
we can solve it step-by-step as follows:
1. Express one variable in terms of the others: Let's solve the second equation for [tex]\( x \)[/tex]:
[tex]\[ x = -8 - y - 2z \][/tex]
2. Substitute [tex]\( x \)[/tex] into the first equation:
[tex]\[ (-8 - y - 2z) + 4y - 7z = 6 \][/tex]
Simplify to find the relationship between [tex]\( y \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ -8 - y - 2z + 4y - 7z = 6 \implies -8 + 3y - 9z = 6 \implies 3y - 9z = 14 \implies y = 3z + \frac{14}{3} \][/tex]
3. General solution: Using the relationships:
- [tex]\( y = 3z + \frac{14}{3} \)[/tex]
- [tex]\( x = -8 - y - 2z \)[/tex]
We can substitute [tex]\( y \)[/tex] into [tex]\( x \)[/tex]:
[tex]\[ x = -8 - (3z + \frac{14}{3}) - 2z = -8 - 3z - \frac{14}{3} - 2z = -8 - 5z - \frac{14}{3} \][/tex]
Convert [tex]\(-8\)[/tex] to a fraction:
[tex]\[ x = - \frac{24}{3} - 5z - \frac{14}{3} = - \frac{38}{3} - 5z \][/tex]
So, the general solution is:
[tex]\[ \begin{cases} x = - \frac{38}{3} - 5z \\ y = 3z + \frac{14}{3} \end{cases} \][/tex]
4. Choose distinct values for [tex]\( z \)[/tex]: Since [tex]\( z \)[/tex] is free, we can choose any distinct values for [tex]\( z \)[/tex] to get distinct solutions. Let's choose [tex]\( z = 0 \)[/tex], [tex]\( z = 1 \)[/tex], and [tex]\( z = 2 \)[/tex].
- For [tex]\( z = 0 \)[/tex]:
[tex]\[ \begin{cases} x = - \frac{38}{3} - 5(0) = - \frac{38}{3} \\ y = 3(0) + \frac{14}{3} = \frac{14}{3} \\ z = 0 \end{cases} \][/tex]
- For [tex]\( z = 1 \)[/tex]:
[tex]\[ \begin{cases} x = - \frac{38}{3} - 5(1) = - \frac{38}{3} - \frac{15}{3} = - \frac{53}{3} \\ y = 3(1) + \frac{14}{3} = 3 + \frac{14}{3} = \frac{23}{3} \\ z = 1 \end{cases} \][/tex]
- For [tex]\( z = 2 \)[/tex]:
[tex]\[ \begin{cases} x = - \frac{38}{3} - 5(2) = - \frac{38}{3} - \frac{30}{3} = - \frac{68}{3} \\ y = 3(2) + \frac{14}{3} = 6 + \frac{14}{3} = \frac{32}{3} \\ z = 2 \end{cases} \][/tex]
Therefore, our three distinct solutions are:
1. [tex]\(\left(- \frac{38}{3}, \frac{14}{3}, 0\right)\)[/tex]
2. [tex]\(\left(- \frac{53}{3}, \frac{23}{3}, 1\right)\)[/tex]
3. [tex]\(\left(- \frac{68}{3}, \frac{32}{3}, 2\right)\)[/tex]
So we can present the solutions as:
- One solution: [tex]\(- \left(\frac{38}{3}, \frac{14}{3}, 0\right)\)[/tex]
- Two solutions: [tex]\(- \left(\frac{38}{3}, \frac{14}{3}, 0\right), \left(- \frac{53}{3}, \frac{23}{3}, 1\right)\)[/tex]
- Three solutions: [tex]\(- \left(\frac{38}{3}, \frac{14}{3}, 0\right), \left(- \frac{53}{3}, \frac{23}{3}, 1\right), \left(- \frac{68}{3}, \frac{32}{3}, 2\right)\)[/tex]
[tex]\[ \begin{array}{l} x+4 y-7 z=6 \\ x+y+2 z=-8 \end{array} \][/tex]
we can solve it step-by-step as follows:
1. Express one variable in terms of the others: Let's solve the second equation for [tex]\( x \)[/tex]:
[tex]\[ x = -8 - y - 2z \][/tex]
2. Substitute [tex]\( x \)[/tex] into the first equation:
[tex]\[ (-8 - y - 2z) + 4y - 7z = 6 \][/tex]
Simplify to find the relationship between [tex]\( y \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ -8 - y - 2z + 4y - 7z = 6 \implies -8 + 3y - 9z = 6 \implies 3y - 9z = 14 \implies y = 3z + \frac{14}{3} \][/tex]
3. General solution: Using the relationships:
- [tex]\( y = 3z + \frac{14}{3} \)[/tex]
- [tex]\( x = -8 - y - 2z \)[/tex]
We can substitute [tex]\( y \)[/tex] into [tex]\( x \)[/tex]:
[tex]\[ x = -8 - (3z + \frac{14}{3}) - 2z = -8 - 3z - \frac{14}{3} - 2z = -8 - 5z - \frac{14}{3} \][/tex]
Convert [tex]\(-8\)[/tex] to a fraction:
[tex]\[ x = - \frac{24}{3} - 5z - \frac{14}{3} = - \frac{38}{3} - 5z \][/tex]
So, the general solution is:
[tex]\[ \begin{cases} x = - \frac{38}{3} - 5z \\ y = 3z + \frac{14}{3} \end{cases} \][/tex]
4. Choose distinct values for [tex]\( z \)[/tex]: Since [tex]\( z \)[/tex] is free, we can choose any distinct values for [tex]\( z \)[/tex] to get distinct solutions. Let's choose [tex]\( z = 0 \)[/tex], [tex]\( z = 1 \)[/tex], and [tex]\( z = 2 \)[/tex].
- For [tex]\( z = 0 \)[/tex]:
[tex]\[ \begin{cases} x = - \frac{38}{3} - 5(0) = - \frac{38}{3} \\ y = 3(0) + \frac{14}{3} = \frac{14}{3} \\ z = 0 \end{cases} \][/tex]
- For [tex]\( z = 1 \)[/tex]:
[tex]\[ \begin{cases} x = - \frac{38}{3} - 5(1) = - \frac{38}{3} - \frac{15}{3} = - \frac{53}{3} \\ y = 3(1) + \frac{14}{3} = 3 + \frac{14}{3} = \frac{23}{3} \\ z = 1 \end{cases} \][/tex]
- For [tex]\( z = 2 \)[/tex]:
[tex]\[ \begin{cases} x = - \frac{38}{3} - 5(2) = - \frac{38}{3} - \frac{30}{3} = - \frac{68}{3} \\ y = 3(2) + \frac{14}{3} = 6 + \frac{14}{3} = \frac{32}{3} \\ z = 2 \end{cases} \][/tex]
Therefore, our three distinct solutions are:
1. [tex]\(\left(- \frac{38}{3}, \frac{14}{3}, 0\right)\)[/tex]
2. [tex]\(\left(- \frac{53}{3}, \frac{23}{3}, 1\right)\)[/tex]
3. [tex]\(\left(- \frac{68}{3}, \frac{32}{3}, 2\right)\)[/tex]
So we can present the solutions as:
- One solution: [tex]\(- \left(\frac{38}{3}, \frac{14}{3}, 0\right)\)[/tex]
- Two solutions: [tex]\(- \left(\frac{38}{3}, \frac{14}{3}, 0\right), \left(- \frac{53}{3}, \frac{23}{3}, 1\right)\)[/tex]
- Three solutions: [tex]\(- \left(\frac{38}{3}, \frac{14}{3}, 0\right), \left(- \frac{53}{3}, \frac{23}{3}, 1\right), \left(- \frac{68}{3}, \frac{32}{3}, 2\right)\)[/tex]