What is the slope of the line that contains the points [tex]$(-1,2)$[/tex] and [tex]$(3,3)$[/tex]?

A. -4
B. [tex]$\frac{1}{4}$[/tex]
C. 4
D. [tex]$-\frac{1}{4}$[/tex]



Answer :

To determine the slope of the line that contains the points [tex]\((-1, 2)\)[/tex] and [tex]\((3, 3)\)[/tex], we use the slope formula:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the given points on the line.

Here, the coordinates of the points are:
[tex]\[ (x_1, y_1) = (-1, 2) \][/tex]
[tex]\[ (x_2, y_2) = (3, 3) \][/tex]

Substitute these values into the slope formula:

[tex]\[ \text{slope} = \frac{3 - 2}{3 - (-1)} \][/tex]

Simplify the expressions in the numerator and the denominator:

[tex]\[ \text{slope} = \frac{1}{3 + 1} \][/tex]

[tex]\[ \text{slope} = \frac{1}{4} \][/tex]

Therefore, the slope of the line that contains the points [tex]\((-1, 2)\)[/tex] and [tex]\((3, 3)\)[/tex] is [tex]\(\frac{1}{4}\)[/tex].

The correct answer is:
B. [tex]\(\frac{1}{4}\)[/tex]