Answer :
Sure, let's solve the given system of linear equations using determinants. The system of equations is:
[tex]\[ \begin{array}{l} x + 4y - z = -14 \\ 5x + 6y + 3z = 4 \\ -2x + 7y + 2z = -17 \end{array} \][/tex]
To solve this system using determinants, we'll use Cramer's rule, which requires calculating the determinants of several matrices.
1. Construct the coefficient matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 4 & -1 \\ 5 & 6 & 3 \\ -2 & 7 & 2 \end{pmatrix} \][/tex]
2. Construct the right-hand side vector [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} -14 \\ 4 \\ -17 \end{pmatrix} \][/tex]
3. Calculate the determinant of the matrix [tex]\( A \)[/tex], denoted as [tex]\( |A| \)[/tex]:
Given is:
[tex]\[ |A| = -119.99999999999997 \][/tex]
4. Construct matrices [tex]\( A_x \)[/tex], [tex]\( A_y \)[/tex], and [tex]\( A_z \)[/tex] by replacing the respective columns of [tex]\( A \)[/tex] with the vector [tex]\( B \)[/tex]:
- Matrix [tex]\( A_x \)[/tex] (replace the first column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]):
[tex]\[ A_x = \begin{pmatrix} -14 & 4 & -1 \\ 4 & 6 & 3 \\ -17 & 7 & 2 \end{pmatrix} \][/tex]
Given is:
[tex]\[ |A_x| = -240.0000000000002 \][/tex]
- Matrix [tex]\( A_y \)[/tex] (replace the second column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]):
[tex]\[ A_y = \begin{pmatrix} 1 & -14 & -1 \\ 5 & 4 & 3 \\ -2 & -17 & 2 \end{pmatrix} \][/tex]
Given is:
[tex]\[ |A_y| = 360.00000000000006 \][/tex]
- Matrix [tex]\( A_z \)[/tex] (replace the third column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]):
[tex]\[ A_z = \begin{pmatrix} 1 & 4 & -14 \\ 5 & 6 & 4 \\ -2 & 7 & -17 \end{pmatrix} \][/tex]
Given is:
[tex]\[ |A_z| = -480.0 \][/tex]
5. Apply Cramer's rule to find [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex]:
According to Cramer's rule:
[tex]\[ x = \frac{|A_x|}{|A|}, \quad y = \frac{|A_y|}{|A|}, \quad z = \frac{|A_z|}{|A|} \][/tex]
Substitute the values of the determinants:
[tex]\[ x = \frac{-240.0000000000002}{-119.99999999999997} = 2.000000000000002 \approx 2 \][/tex]
[tex]\[ y = \frac{360.00000000000006}{-119.99999999999997} = -3.0000000000000004 \approx -3 \][/tex]
[tex]\[ z = \frac{-480.0}{-119.99999999999997} = 4.000000000000001 \approx 4 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x = 2, \quad y = -3, \quad z = 4 \][/tex]
[tex]\[ \begin{array}{l} x + 4y - z = -14 \\ 5x + 6y + 3z = 4 \\ -2x + 7y + 2z = -17 \end{array} \][/tex]
To solve this system using determinants, we'll use Cramer's rule, which requires calculating the determinants of several matrices.
1. Construct the coefficient matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 4 & -1 \\ 5 & 6 & 3 \\ -2 & 7 & 2 \end{pmatrix} \][/tex]
2. Construct the right-hand side vector [tex]\( B \)[/tex]:
[tex]\[ B = \begin{pmatrix} -14 \\ 4 \\ -17 \end{pmatrix} \][/tex]
3. Calculate the determinant of the matrix [tex]\( A \)[/tex], denoted as [tex]\( |A| \)[/tex]:
Given is:
[tex]\[ |A| = -119.99999999999997 \][/tex]
4. Construct matrices [tex]\( A_x \)[/tex], [tex]\( A_y \)[/tex], and [tex]\( A_z \)[/tex] by replacing the respective columns of [tex]\( A \)[/tex] with the vector [tex]\( B \)[/tex]:
- Matrix [tex]\( A_x \)[/tex] (replace the first column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]):
[tex]\[ A_x = \begin{pmatrix} -14 & 4 & -1 \\ 4 & 6 & 3 \\ -17 & 7 & 2 \end{pmatrix} \][/tex]
Given is:
[tex]\[ |A_x| = -240.0000000000002 \][/tex]
- Matrix [tex]\( A_y \)[/tex] (replace the second column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]):
[tex]\[ A_y = \begin{pmatrix} 1 & -14 & -1 \\ 5 & 4 & 3 \\ -2 & -17 & 2 \end{pmatrix} \][/tex]
Given is:
[tex]\[ |A_y| = 360.00000000000006 \][/tex]
- Matrix [tex]\( A_z \)[/tex] (replace the third column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]):
[tex]\[ A_z = \begin{pmatrix} 1 & 4 & -14 \\ 5 & 6 & 4 \\ -2 & 7 & -17 \end{pmatrix} \][/tex]
Given is:
[tex]\[ |A_z| = -480.0 \][/tex]
5. Apply Cramer's rule to find [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex]:
According to Cramer's rule:
[tex]\[ x = \frac{|A_x|}{|A|}, \quad y = \frac{|A_y|}{|A|}, \quad z = \frac{|A_z|}{|A|} \][/tex]
Substitute the values of the determinants:
[tex]\[ x = \frac{-240.0000000000002}{-119.99999999999997} = 2.000000000000002 \approx 2 \][/tex]
[tex]\[ y = \frac{360.00000000000006}{-119.99999999999997} = -3.0000000000000004 \approx -3 \][/tex]
[tex]\[ z = \frac{-480.0}{-119.99999999999997} = 4.000000000000001 \approx 4 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x = 2, \quad y = -3, \quad z = 4 \][/tex]