Answer :
Sure, let's evaluate the given expression step by step.
We need to evaluate the fraction:
[tex]\[ \frac{-10 - (-6) \times (-6) + (-2) + (-18)}{-8 + (-6) + (-2) \times 2} \][/tex]
### Step 1: Evaluate the Numerator
The numerator is:
[tex]\[ -10 - (-6) \times (-6) + (-2) + (-18) \][/tex]
First, we handle the multiplication inside the numerator:
[tex]\[ (-6) \times (-6) = 36 \][/tex]
Now substitute this back into the numerator:
[tex]\[ -10 - 36 + (-2) + (-18) \][/tex]
Then, perform the addition and subtraction from left to right:
[tex]\[ -10 - 36 = -46 \][/tex]
[tex]\[ -46 + (-2) = -48 \][/tex]
[tex]\[ -48 + (-18) = -66 \][/tex]
So, the numerator is:
[tex]\[ -66 \][/tex]
### Step 2: Evaluate the Denominator
The denominator is:
[tex]\[ -8 + (-6) + (-2) \times 2 \][/tex]
First, we handle the multiplication inside the denominator:
[tex]\[ (-2) \times 2 = -4 \][/tex]
Now substitute this back into the denominator:
[tex]\[ -8 + (-6) + (-4) \][/tex]
Next, perform the addition from left to right:
[tex]\[ -8 + (-6) = -14 \][/tex]
[tex]\[ -14 + (-4) = -18 \][/tex]
So, the denominator is:
[tex]\[ -18 \][/tex]
### Step 3: Divide the Numerator by the Denominator
Now we have:
[tex]\[ \frac{-66}{-18} \][/tex]
Since we are dividing two negative numbers, the result will be positive. Perform the division:
[tex]\[ \frac{-66}{-18} \approx 3.6666666666666665 \][/tex]
Thus, the result of the given expression is:
[tex]\[ 3.6666666666666665 \][/tex]
So, the final answer is:
[tex]\[ \boxed{3.6666666666666665} \][/tex]
We need to evaluate the fraction:
[tex]\[ \frac{-10 - (-6) \times (-6) + (-2) + (-18)}{-8 + (-6) + (-2) \times 2} \][/tex]
### Step 1: Evaluate the Numerator
The numerator is:
[tex]\[ -10 - (-6) \times (-6) + (-2) + (-18) \][/tex]
First, we handle the multiplication inside the numerator:
[tex]\[ (-6) \times (-6) = 36 \][/tex]
Now substitute this back into the numerator:
[tex]\[ -10 - 36 + (-2) + (-18) \][/tex]
Then, perform the addition and subtraction from left to right:
[tex]\[ -10 - 36 = -46 \][/tex]
[tex]\[ -46 + (-2) = -48 \][/tex]
[tex]\[ -48 + (-18) = -66 \][/tex]
So, the numerator is:
[tex]\[ -66 \][/tex]
### Step 2: Evaluate the Denominator
The denominator is:
[tex]\[ -8 + (-6) + (-2) \times 2 \][/tex]
First, we handle the multiplication inside the denominator:
[tex]\[ (-2) \times 2 = -4 \][/tex]
Now substitute this back into the denominator:
[tex]\[ -8 + (-6) + (-4) \][/tex]
Next, perform the addition from left to right:
[tex]\[ -8 + (-6) = -14 \][/tex]
[tex]\[ -14 + (-4) = -18 \][/tex]
So, the denominator is:
[tex]\[ -18 \][/tex]
### Step 3: Divide the Numerator by the Denominator
Now we have:
[tex]\[ \frac{-66}{-18} \][/tex]
Since we are dividing two negative numbers, the result will be positive. Perform the division:
[tex]\[ \frac{-66}{-18} \approx 3.6666666666666665 \][/tex]
Thus, the result of the given expression is:
[tex]\[ 3.6666666666666665 \][/tex]
So, the final answer is:
[tex]\[ \boxed{3.6666666666666665} \][/tex]