Suppose [tex]0.09886 \, \text{M} \, \text{KOH}[/tex] is titrated into [tex]15.00 \, \text{mL} \, \text{H}_2\text{SO}_4[/tex] of unknown concentration until the equivalence point is reached. It takes a total volume of [tex]29.25 \, \text{mL} \, \text{KOH}[/tex] to neutralize the [tex]\text{H}_2\text{SO}_4[/tex].

How many moles of base were needed to reach the equivalence point? Express the answer to five significant figures.

[tex]\[0.0014458 \, \text{moles base}\][/tex]



Answer :

To determine the number of moles of base (KOH) needed to reach the equivalence point when titrating 15.00 mL of [tex]\( H_2SO_4 \)[/tex] with 0.09886 M KOH and a volume of 29.25 mL of KOH, follow these steps:

1. Convert the volume of KOH from milliliters to liters:
[tex]\[ \text{Volume of KOH} = 29.25 \, \text{mL} = \frac{29.25}{1000} \, \text{L} = 0.02925 \, \text{L} \][/tex]

2. Calculate the moles of KOH:
To find the number of moles, use the formula:
[tex]\[ \text{Moles of KOH} = \text{Volume of KOH (L)} \times \text{Concentration of KOH (M)} \][/tex]
Substituting the given values:
[tex]\[ \text{Moles of KOH} = 0.02925 \, \text{L} \times 0.09886 \, \text{M} \][/tex]
[tex]\[ \text{Moles of KOH} = 0.002891655 \][/tex]

3. Round the moles of KOH to five significant figures:
[tex]\[ \text{Moles of KOH (rounded)} = 0.002891655 \approx 0.00289 \, (\text{to five significant figures}) \][/tex]

Thus, the number of moles of KOH required to reach the equivalence point is:
[tex]\[ 0.00289 \, \text{moles} \][/tex]