[tex]\[
\begin{aligned}
\sqrt{(b-5)^2} &= \sqrt{25} \\
b-5 &= \sqrt{5 \cdot 5} \\
b-5 &= \sqrt{5} \cdot \sqrt{5} \\
b-5 &= 5 \\
b &= 10
\end{aligned}
\][/tex]



Answer :

Certainly! Let's solve the equation step by step.

We start with:
[tex]\[ \begin{aligned} \sqrt{(b-5)^2} &= \sqrt{25} \end{aligned} \][/tex]

Firstly, we know that [tex]\(\sqrt{x^2} = |x|\)[/tex], where [tex]\(|x|\)[/tex] denotes the absolute value of [tex]\(x\)[/tex]. The absolute value function accounts for both the positive and negative values. Therefore:
[tex]\[ \sqrt{(b-5)^2} = |b-5| \][/tex]
So, our equation now becomes:
[tex]\[ |b-5| = \sqrt{25} \][/tex]

Next, we simplify [tex]\(\sqrt{25}\)[/tex]:
[tex]\[ \sqrt{25} = 5 \][/tex]

Thus, our equation is updated to:
[tex]\[ |b-5| = 5 \][/tex]

The absolute value equation [tex]\(|x| = a\)[/tex] implies two separate equations: [tex]\(x = a\)[/tex] or [tex]\(x = -a\)[/tex]. Therefore, we solve for [tex]\(b\)[/tex] in the following two cases:
1. [tex]\(b - 5 = 5\)[/tex]
2. [tex]\(b - 5 = -5\)[/tex]

Case 1: [tex]\(b - 5 = 5\)[/tex]

Add 5 to both sides:
[tex]\[ b - 5 + 5 = 5 + 5 \][/tex]
[tex]\[ b = 10 \][/tex]

Case 2: [tex]\(b - 5 = -5\)[/tex]

Add 5 to both sides:
[tex]\[ b - 5 + 5 = -5 + 5 \][/tex]
[tex]\[ b = 0 \][/tex]

Thus, the solutions to the equation are:
[tex]\[ b = 10 \quad \text{or} \quad b = 0 \][/tex]

So, the final answers are:
[tex]\[ \boxed{b = 10 \text{ or } b = 0} \][/tex]