1. Solve for [tex]x[/tex]:

[tex]\[
\begin{aligned}
x^2 + 10x + 2 &= 0 \\
x^2 + 10x &= 2 \\
x^2 + 10x + \left(\frac{10}{2}\right)^2 &= 2 + \left(\frac{10}{2}\right)^2 \\
x^2 + 10x + (5)^2 &= 2 + 25 \\
x^2 + 10x + 25 &= 27 \\
(x + 5)^2 &= 27 \\
x + 5 &= \sqrt{27} \\
x + 5 &= 3\sqrt{3} \\
x &= 3\sqrt{3} - 5 \\
\end{aligned}
\][/tex]



Answer :

Certainly! Let's solve the quadratic equation [tex]\(x^2 + 10x + 2 = 0\)[/tex] step by step.

1. Start with the given quadratic equation:
[tex]\[ x^2 + 10x + 2 = 0 \][/tex]

2. Move the constant term to the right side of the equation:
[tex]\[ x^2 + 10x = -2 \][/tex]

3. To complete the square, take the coefficient of [tex]\(x\)[/tex], which is 10, divide it by 2, and square the result. This gives:
[tex]\[ \left(\frac{10}{2}\right)^2 = 25 \][/tex]

4. Add this value (25) to both sides of the equation:
[tex]\[ x^2 + 10x + 25 = -2 + 25 \][/tex]

5. Simplify the right side:
[tex]\[ x^2 + 10x + 25 = 23 \][/tex]

6. Now, the left side of the equation is a perfect square:
[tex]\[ (x + 5)^2 = 23 \][/tex]

7. Take the square root of both sides of the equation:
[tex]\[ x + 5 = \pm \sqrt{23} \][/tex]

8. Solve for [tex]\(x\)[/tex] by isolating it on one side:
[tex]\[ x = -5 + \sqrt{23} \quad \text{or} \quad x = -5 - \sqrt{23} \][/tex]

Therefore, the solutions to the quadratic equation [tex]\(x^2 + 10x + 2 = 0\)[/tex] are:

[tex]\[ x = -5 + \sqrt{23} \approx 0.196 \quad \text{and} \quad x = -5 - \sqrt{23} \approx -10.196 \][/tex]

So, the solutions are roughly [tex]\(0.196\)[/tex] and [tex]\(-10.196\)[/tex].