Answer :
Certainly! Let's solve the problem step-by-step.
We need to compute the expression [tex]\(\frac{3}{4} \div \frac{1}{8}\)[/tex] first, and then find [tex]\(\frac{3}{4} \div \frac{1}{8}\)[/tex] of [tex]\(\frac{3}{5}\)[/tex].
### Step 1: Division of Fractions
To divide [tex]\(\frac{3}{4}\)[/tex] by [tex]\(\frac{1}{8}\)[/tex], we multiply [tex]\(\frac{3}{4}\)[/tex] by the reciprocal of [tex]\(\frac{1}{8}\)[/tex]. The reciprocal of [tex]\(\frac{1}{8}\)[/tex] is [tex]\(\frac{8}{1}\)[/tex].
So, we have:
[tex]\[ \frac{3}{4} \div \frac{1}{8} = \frac{3}{4} \times \frac{8}{1} \][/tex]
### Step 2: Multiplying the Fractions
Next, multiply the numerators together and the denominators together:
[tex]\[ \frac{3}{4} \times \frac{8}{1} = \frac{3 \times 8}{4 \times 1} = \frac{24}{4} \][/tex]
### Step 3: Simplifying the Fraction
Simplify [tex]\(\frac{24}{4}\)[/tex]:
[tex]\[ \frac{24}{4} = 6 \][/tex]
So, [tex]\(\frac{3}{4} \div \frac{1}{8} = 6\)[/tex].
### Step 4: Multiplying by [tex]\(\frac{3}{5}\)[/tex]
Now, we need to find [tex]\(6\)[/tex] of [tex]\(\frac{3}{5}\)[/tex]. This is done by multiplying [tex]\(6\)[/tex] by [tex]\(\frac{3}{5}\)[/tex]:
[tex]\[ 6 \times \frac{3}{5} = \frac{6 \times 3}{5} = \frac{18}{5} \][/tex]
### Step 5: Converting to Decimal (if needed)
Converting [tex]\(\frac{18}{5}\)[/tex] to a decimal:
[tex]\[ \frac{18}{5} = 3.6 \][/tex]
Thus, [tex]\(\frac{3}{4} \div \frac{1}{8}\)[/tex] of [tex]\(\frac{3}{5}\)[/tex] is [tex]\(\frac{18}{5}\)[/tex] or [tex]\(3.6\)[/tex].
### Final Result
[tex]\[ 3.6 \][/tex]
We need to compute the expression [tex]\(\frac{3}{4} \div \frac{1}{8}\)[/tex] first, and then find [tex]\(\frac{3}{4} \div \frac{1}{8}\)[/tex] of [tex]\(\frac{3}{5}\)[/tex].
### Step 1: Division of Fractions
To divide [tex]\(\frac{3}{4}\)[/tex] by [tex]\(\frac{1}{8}\)[/tex], we multiply [tex]\(\frac{3}{4}\)[/tex] by the reciprocal of [tex]\(\frac{1}{8}\)[/tex]. The reciprocal of [tex]\(\frac{1}{8}\)[/tex] is [tex]\(\frac{8}{1}\)[/tex].
So, we have:
[tex]\[ \frac{3}{4} \div \frac{1}{8} = \frac{3}{4} \times \frac{8}{1} \][/tex]
### Step 2: Multiplying the Fractions
Next, multiply the numerators together and the denominators together:
[tex]\[ \frac{3}{4} \times \frac{8}{1} = \frac{3 \times 8}{4 \times 1} = \frac{24}{4} \][/tex]
### Step 3: Simplifying the Fraction
Simplify [tex]\(\frac{24}{4}\)[/tex]:
[tex]\[ \frac{24}{4} = 6 \][/tex]
So, [tex]\(\frac{3}{4} \div \frac{1}{8} = 6\)[/tex].
### Step 4: Multiplying by [tex]\(\frac{3}{5}\)[/tex]
Now, we need to find [tex]\(6\)[/tex] of [tex]\(\frac{3}{5}\)[/tex]. This is done by multiplying [tex]\(6\)[/tex] by [tex]\(\frac{3}{5}\)[/tex]:
[tex]\[ 6 \times \frac{3}{5} = \frac{6 \times 3}{5} = \frac{18}{5} \][/tex]
### Step 5: Converting to Decimal (if needed)
Converting [tex]\(\frac{18}{5}\)[/tex] to a decimal:
[tex]\[ \frac{18}{5} = 3.6 \][/tex]
Thus, [tex]\(\frac{3}{4} \div \frac{1}{8}\)[/tex] of [tex]\(\frac{3}{5}\)[/tex] is [tex]\(\frac{18}{5}\)[/tex] or [tex]\(3.6\)[/tex].
### Final Result
[tex]\[ 3.6 \][/tex]