Evaluate the numerical expression [tex]\left(2^3\right)^{\frac{1}{2}}[/tex].

A. 4
B. [tex]\sqrt[3]{4}[/tex]
C. [tex]\sqrt{8}[/tex]
D. [tex]\sqrt{128}[/tex]



Answer :

To evaluate the numerical expression [tex]\(\left(2^3\right)^{\frac{1}{2}}\)[/tex], we need to follow a step-by-step approach:

1. Evaluate the inner exponent first:
[tex]\[ 2^3 \][/tex]
[tex]\(2^3\)[/tex] means [tex]\(2\)[/tex] raised to the power [tex]\(3\)[/tex]:
[tex]\[ 2^3 = 2 \times 2 \times 2 = 8 \][/tex]

2. Now, take the square root of the result:
We need to take the square root of [tex]\(8\)[/tex]:
[tex]\[ \sqrt{8} \][/tex]
The square root of [tex]\(8\)[/tex] can also be written in exponential form as:
[tex]\[ 8^{\frac{1}{2}} \][/tex]

3. Find the value of [tex]\(8^{\frac{1}{2}}\)[/tex]:
The numerical value of the square root of [tex]\(8\)[/tex] is approximately:
[tex]\[ \sqrt{8} \approx 2.8284271247461903 \][/tex]

So, the expression [tex]\(\left(2^3\right)^{\frac{1}{2}}\)[/tex] simplifies to [tex]\(\sqrt{8}\)[/tex], which is approximately [tex]\(2.8284271247461903\)[/tex].

Therefore, the correct answer is:
[tex]\[ \sqrt{8} \][/tex]