Answer :

Let's solve for the product of the binomials [tex]\((2x + 5)(3x - 4)\)[/tex] using the distributive property, often referred to as the FOIL method for binomials.

Step 1: Expand the product using the distributive property

[tex]\[ (2x + 5)(3x - 4) \][/tex]

[tex]\[ = (2x \cdot 3x) + (2x \cdot -4) + (5 \cdot 3x) + (5 \cdot -4) \][/tex]

Step 2: Multiply each term

1. Multiply the first terms:

[tex]\[ 2x \cdot 3x = 6x^2 \][/tex]

2. Multiply the outer terms:

[tex]\[ 2x \cdot -4 = -8x \][/tex]

3. Multiply the inner terms:

[tex]\[ 5 \cdot 3x = 15x \][/tex]

4. Multiply the last terms:

[tex]\[ 5 \cdot -4 = -20 \][/tex]

Step 3: Combine like terms

Now, combine the terms we obtained:

[tex]\[ 6x^2 - 8x + 15x - 20 \][/tex]

Combine the [tex]\(x\)[/tex] terms:

[tex]\[ -8x + 15x = 7x \][/tex]

Step 4: Write the final expression

[tex]\[ 6x^2 + 7x - 20 \][/tex]

So, the product of the binomials [tex]\((2x + 5)(3x - 4)\)[/tex] is:

[tex]\[ 6x^2 + 7x - 20 \][/tex]