What is the solution to this equation?

[tex]\[
\frac{5}{4}x = -12
\][/tex]

A. [tex]\( x = -3 \)[/tex]

B. [tex]\( x = -48 \)[/tex]

C. [tex]\( x = 48 \)[/tex]

D. [tex]\( x = 3 \)[/tex]



Answer :

To solve the equation [tex]\(\frac{5}{4} = -12\)[/tex], we first need to clarify the question since as it stands, [tex]\(\frac{5}{4}\)[/tex] is a fraction and cannot equal [tex]\(-12\)[/tex]. It's likely the equation should be [tex]\(\frac{5}{x} = -12\)[/tex]. So, let's solve for [tex]\(x\)[/tex] under this assumption:

1. Let's start with the equation:
[tex]\[ \frac{5}{x} = -12 \][/tex]

2. To isolate [tex]\(x\)[/tex], we can multiply both sides of the equation by [tex]\(x\)[/tex]:
[tex]\[ 5 = -12x \][/tex]

3. Next, we solve for [tex]\(x\)[/tex] by dividing both sides of the equation by [tex]\(-12\)[/tex]:
[tex]\[ x = \frac{5}{-12} \][/tex]

4. Simplifying [tex]\(\frac{5}{-12}\)[/tex] gives us:
[tex]\[ x = -0.4166666666666667 \][/tex]

Now, we need to examine the given options to find the closest match to our calculated value of [tex]\(x = -0.4166666666666667\)[/tex]:

- Option A: [tex]\(x=-3\)[/tex]
- Option B: [tex]\(x=-48\)[/tex]
- Option C: [tex]\(x=48\)[/tex]
- Option D: [tex]\(x=3\)[/tex]

Comparing [tex]\(-0.4166666666666667\)[/tex] with the provided options, we see that it is closest to the value [tex]\(-3\)[/tex] in Option A.

Therefore, the solution to the equation [tex]\(\frac{5}{x} = -12\)[/tex] is:

A. [tex]\(x = -3\)[/tex]